AI Article Synopsis

  • Epigenetic machinery plays a crucial role in normal cell development by controlling tissue-specific gene expression in mammalian cells, and disruptions in this system can contribute significantly to cancer.
  • Cancer is now understood as a combination of genetic mutations and epigenetic changes, which alter gene function and are linked to cancer progression.
  • The review discusses how factors like DNA methylation, histone modifications, and noncoding RNAs impact cellular processes, highlighting the potential for new targeted therapies based on these epigenetic mechanisms.

Article Abstract

Epigenetic machinery is a cornerstone in normal cell development, orchestrating tissue-specific gene expression in mammalian cells. Aberrations in this intricate landscape drive substantial changes in gene function, emerging as a linchpin in cancer etiology and progression. While cancer was conventionally perceived as solely a genetic disorder, its contemporary definition encompasses genetic alterations intertwined with disruptive epigenetic abnormalities. This review explores the profound impact of DNA methylation, histone modifications, and noncoding RNAs on fundamental cellular processes. When these pivotal epigenetic mechanisms undergo disruption, they intricately guide the acquisition of the 6 hallmark characteristics of cancer within seemingly normal cells. Leveraging the latest advancements in decoding these epigenetic intricacies holds immense promise, heralding a new era in developing targeted and more efficacious treatment modalities against cancers driven by aberrant epigenetic modifications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11119348PMC
http://dx.doi.org/10.1177/15330338241250317DOI Listing

Publication Analysis

Top Keywords

epigenetic
6
deciphering epigenetic
4
epigenetic symphony
4
cancer
4
symphony cancer
4
cancer insights
4
insights epigenetic
4
epigenetic therapies
4
therapies implications
4
implications epigenetic
4

Similar Publications

Common variable immunodeficiency (CVID) is the most common symptomatic and heterogeneous type of inborn errors of immunity (IEI). However, the pathogenesis process of this disease is often unknown. Epigenetic modifications may be involved in unresolved patients.

View Article and Find Full Text PDF

PRMT1-Mediated Arginine Methylation Promotes Corneal Epithelial Wound Healing via Epigenetic Regulation of ANXA3.

Invest Ophthalmol Vis Sci

January 2025

State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.

Purpose: Protein arginine methyltransferase 1 (PRMT1) is an integral constituent of numerous cellular processes. However, its role in corneal epithelial wound healing (CEWH) remains unclear. This study investigates the impact of PRMT1 on cellular mechanisms underlying corneal epithelial repair and its potential to improve wound healing outcomes.

View Article and Find Full Text PDF

Unidirectional and bidirectional causation between smoking and blood DNA methylation: evidence from twin-based Mendelian randomisation.

Eur J Epidemiol

January 2025

Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, 800 E. Leigh St., Suite 100, Richmond, VA, 23298, USA.

Cigarette smoking is associated with numerous differentially-methylated genomic loci in multiple human tissues. These associations are often assumed to reflect the causal effects of smoking on DNA methylation (DNAm), which may underpin some of the adverse health sequelae of smoking. However, prior causal analyses with Mendelian Randomisation (MR) have found limited support for such effects.

View Article and Find Full Text PDF

'Nomadic' Hematopoietic Stem Cells Navigate the Embryonic Landscape.

Stem Cell Rev Rep

January 2025

Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India.

Hematopoietic stem cells are a unique population of tissue-resident multipotent cells with an extensive ability to self-renew and regenerate the entire lineage of differentiated blood cells. Stem cells reside in a highly specialized microenvironment with surrounding supporting cells, forming a complex and dynamic network to preserve and maintain their function. The survival, activation, and quiescence of stem cells are largely influenced by niche-derived signals, with aging niche contributing to a decline in stem cell function.

View Article and Find Full Text PDF

Paediatric renal tumours: an update on challenges and recent developments.

Virchows Arch

January 2025

Histology Laboratory, Children's Health Ireland, Dublin, Ireland.

Paediatric renal tumours include a broad range of neoplasms which largely differ, but also overlap to a smaller extent, with adult kidney cancer. These include the embryonal tumour nephroblastoma, which accounts for the majority of cases of kidney cancer in the first decade of life and, despite boasting a cure in ~ 90% cases, still presents clinical challenges in a small proportion of cases. A variety of less common mesenchymal tumours, including the mostly indolent congenital mesoblastic nephroma, clear cell sarcoma of kidney which continues to be associated with poor outcomes for higher stage disease, and the typically lethal malignant rhabdoid tumour, form the bulk of the remaining presentations in the first decade.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!