Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Wound pH has emerged as a promising therapeutic target in diabetic foot ulcers (DFU). Here, we aimed to develop a microparticle-loaded hydrogel for pH modulation in wound fluid. In a screen of polymeric and inorganic microparticles, zeolites were identified as pH-modulating microparticles. Zeolites were encapsulated in a calcium cross-linked alginate hydrogel, a biocompatible matrix clinically used as a wound dressing. This hydrogel potently neutralized hydroxide ions in serum-containing simulated wound fluid. These findings encourage a further development of this pH-modulating device as a molecular therapeutic system for DFUs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.4c00332 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!