The accomplishment of long-distance spin transfer scenarios between several magnetic centers is a big challenge for building and supporting spin-logic units for developing future all-optical magnetic unit operations. Using high-level quantum chemistry theory CCSD and EOM-CCSD, we systematically study the ultrafast laser-induced spin-dynamics process on a carbon-based material, to which four magnetic centers are attached. We show that the CCSD method with the 6-31G basis set calculation is sensitive to the C-Ni bond length. The spin density distribution, which is computed using EOM-CCSD with LanL2DZ+ECP calculations, Mulliken population analysis, including spin-orbit-coupling (SOC) and a magnetic field, fulfills the requirements for achieving spin dynamics processes. Different local spin-flip and spin-transfer processes are accomplished within the subpicosecond regime. The impact of the propagation direction of the laser pulse by switching their polar and the azimuthal angles in spherical coordinates on the spin dynamics processes is analyzed. Double laser pulses with time delay δ ≥ 200 × FWHM yield in a realistic magnetic field gradient selectively a lateral resolution, which corresponds to distances smaller than the CMOS scale (2 nm in 2024) while our system size is comparable to the CMOS scale. Here and processes with two quasi-degenerate intermediate levels are used. We propose a model of an integrated spin-logic processor created from an array of individual spin-logic blocks, which are realized by four magnetic centers Ni. The findings of this study demonstrate the enormous potential of using laser-induced spin dynamics as the fundamental mechanism for future molecular magnetic technology.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp00523fDOI Listing

Publication Analysis

Top Keywords

magnetic centers
12
spin dynamics
12
double laser
8
laser pulses
8
magnetic field
8
dynamics processes
8
cmos scale
8
magnetic
7
spin
5
single double
4

Similar Publications

Purpose: Transurethral resection of bladder tumor (TURBT) is the initial staging procedure for new bladder cancers (BCs). For muscle-invasive bladder cancers (MIBCs), TURBT may delay definitive treatment. We investigated whether definitive treatment can be expedited for MIBC using flexible cystoscopic biopsy and multiparametric magnetic resonance imaging (mpMRI) for initial staging.

View Article and Find Full Text PDF

Purpose: Perfusion modeling presents significant opportunities for imaging biomarker development in breast cancer but has historically been held back by the need for data beyond the clinical standard of care (SoC) and uncertainty in the interpretability of results. We aimed to design a perfusion model applicable to breast cancer SoC dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) series with results stable to low temporal resolution imaging, comparable with published results using full-resolution DCE-MRI, and correlative with orthogonal imaging modalities indicative of biophysical markers.

Methods: Subsampled high-temporal-resolution DCE-MRI series were run through our perfusion model and resulting fits were compared for consistency.

View Article and Find Full Text PDF

Specialization of the human hippocampal long axis revisited.

Proc Natl Acad Sci U S A

January 2025

Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138.

The hippocampus possesses anatomical differences along its long axis. Here, we explored the functional specialization of the human hippocampal long axis using network-anchored precision functional MRI in two independent datasets (N = 11 and N = 9) paired with behavioral analysis (N = 266 and N = 238). Functional connectivity analyses demonstrated that the anterior hippocampus was preferentially correlated with a cerebral network associated with remembering, while the posterior hippocampus selectively contained a region correlated with a distinct network associated with behavioral salience.

View Article and Find Full Text PDF

Purpose Of Review: Our purpose was to discuss the advantages and disadvantages of various noninvasive imaging modalities in the evaluation of cardiovascular disease (CVD) in patients with autoimmune rheumatic diseases (ARDs). The detailed knowledge of imaging modalities will facilitate the diagnosis and follow up of CVD in ARDs.

Recent Findings: Autoimmune Rheumatic Diseases (ARDs) are characterized by alterations in immunoregulatory system of the body.

View Article and Find Full Text PDF

Historically, Friedreich's Ataxia (FRDA) has been linked to a relatively preserved cerebellar cortex. Recent advances in neuroimaging have revealed altered cerebello-cerebral functional connectivity (FC), but the extent of intra-cerebellar FC changes and their impact on cognition remains unclear. This study investigates intra-cerebellar FC alterations and their cognitive implications in FRDA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!