Traumatic brain injury (TBI) is a critical public health concern, yet there are no therapeutics available to improve long-term outcomes. Drug delivery to TBI remains a challenge due to the blood-brain barrier and increased intracranial pressure. In this work, a chemical targeting approach to improve delivery of materials to the injured brain, is developed. It is hypothesized that the provisional fibrin matrix can be harnessed as an injury-specific scaffold that can be targeted by materials via click chemistry. To accomplish this, the brain clot is engineered in situ by delivering fibrinogen modified with strained cyclooctyne (SCO) moieties, which incorporated into the injury lesion and is retained there for days. Improved intra-injury capture and retention of diverse, clickable azide-materials including a small molecule azide-dye, 40 kDa azide-PEG nanomaterial, and a therapeutic azide-protein in multiple dosing regimens is subsequently observed. To demonstrate therapeutic translation of this approach, a reduction in reactive oxygen species levels in the injured brain after delivery of the antioxidant catalase, is achieved. Further, colocalization between azide and SCO-fibrinogen is specific to the brain over off-target organs. Taken together, a chemical targeting strategy leveraging endogenous clot formation is established which can be applied to improve therapeutic delivery after TBI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293973 | PMC |
http://dx.doi.org/10.1002/adma.202301738 | DOI Listing |
J Expo Sci Environ Epidemiol
January 2025
Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Background: Preterm birth (PTB) is a common pregnancy complication associated with significant neonatal morbidity. Prenatal exposure to environmental chemicals, including toxic and/or essential metal(loid)s, may contribute to PTB risk.
Objective: We aimed to summarize the epidemiologic evidence of the associations among levels of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), lead (Pb), and zinc (Zn) assessed during the prenatal period and PTB or gestational age at delivery; to assess the quality of the literature and strength of evidence for an effect for each metal; and to provide recommendations for future research.
Mol Neurobiol
January 2025
Department of Molecular Pharmacology, Albert Einstein College of Medicine Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
Epidemiological evidence has shown that the regular ingestion of vegetables and fruits is associated with reduced risk of developing chronic diseases. The introduction of the 3Rs (replacement, reduction, and refinement) principle into animal experiments has led to the use of valid, cost-effective, and efficient alternative and complementary invertebrate animal models which are simpler and lower in the phylogenetic hierarchy. Caenorhabditis elegans (C.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
In order to address the issue of tracking errors of collision Caenorhabditis elegans, this research proposes an improved particle filter tracking method integrated with cultural algorithm. The particle filter algorithm is enhanced through the integration of the sine cosine algorithm, thereby facilitating uninterrupted tracking of the target C. elegans.
View Article and Find Full Text PDFNat Commun
January 2025
School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
Stereocontrolled construction of tetrasubstituted olefins has been an attractive issue yet remains challenging for synthetic chemists. In this manuscript, alkynyl selenides, when treated with ArBCl, are subject to an exclusive 1,1-carboboration, affording tetrasubstituted alkenes with excellent levels of E-selectivity. Detailed mechanistic studies, supported by DFT calculations, elucidates the role of selenium in this 1,1-addition process.
View Article and Find Full Text PDFCell Death Discov
January 2025
Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
Ankyloblepharon-Ectodermal Defects-Cleft Lip/Palate (AEC) syndrome is a rare genetic disorder caused by mutations in the TP63 gene, which encodes a transcription factor essential for epidermal gene expression. A key feature of AEC syndrome is chronic skin erosion, for which no effective treatment currently exists. Our previous studies demonstrated that mutations associated with AEC syndrome lead to p63 protein misfolding and aggregation, exerting a dominant-negative effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!