In this paper, the regioselectivity of electrochemical Co(II)-catalyzed [2 + 2 + 2] cycloaddition of terminal alkynes was investigated using density functional theory. We explored in detail the energy profiles for both 1,2,4- and 1,3,5-regioselectivity pathways and revealed the origin of the regioselectivity. Two kinds of conformational isomers derived from the different coordination modes of alkynes with cobaltacyclopentadiene have been found, which were formed through electrochemically mediated redox processes. The regioselectivity of the reaction depends on the two coordination modes. When the Co(II) center attacks α-C of the third alkyne, while β-C in cyclopentadiene bonds to β-C of the alkyne, the reaction favors the formation of 1,2,4-products. In contrast, when the Co(II) center connects to β-C of the alkyne, it forms only the 1,3,5-products via [4 + 2] cycloaddition because of the steric repulsion between the bulky ligand on Co(II) and the phenyl group in the alkyne.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.4c00513DOI Listing

Publication Analysis

Top Keywords

regioselectivity electrochemical
8
electrochemical coii-catalyzed
8
coii-catalyzed cycloaddition
8
cycloaddition terminal
8
coordination modes
8
coii center
8
β-c alkyne
8
mechanistic investigation
4
regioselectivity
4
investigation regioselectivity
4

Similar Publications

The nickel catalyzed multi-component cross-electrophile carbonylation which emerges as a powerful and efficient method for constructing diverse ketones has attracted increasing attention of organic chemists. However, the selectivity of this reaction poses a significant challenge. In this work, we have developed a current-regulated selective nickel-catalyzed electroreductive cross-electrophile carbonylation, which offers a direct convergent synthesis of β/γ-hydroxy ketones, which represent pivotal structural motifs found in numerous natural products, bioactive molecules, pharmaceutical compounds, and essential building blocks.

View Article and Find Full Text PDF

A group of bithiophenyl compounds comprising the cyanoacrylate moiety were designed and successfully synthesized. The optical, (spectro)electrochemical, and aggregation-induced emission properties were studied. DFT calculations were used to explain the reaction's regioselectivity and to determine the molecules' energy parameters (i.

View Article and Find Full Text PDF

Here, we report an electrochemical approach to generate an aldoxime-substituted nitrile oxide via the activation of nitromethane. The Cu-catalyzed Huisgen reaction of this 1,3-dipole with alkynes enables successful preparation of 48 new isoxazole aldoximes, which are typically challenging to synthesize by other methods, in 52 to 97% yields with excellent regioselectivity and chemoselectivity in a single step. Moreover, 20 3,3'-bisisoxazoles are prepared from the isoxazole aldoxime products in good yields via a two-step sequence.

View Article and Find Full Text PDF

Diarenofuran[]-fused BODIPYs: One-Pot SAr-Suzuki Synthesis and Properties.

J Org Chem

December 2024

Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.

We present a streamlined methodology that integrates regioselective tetrahalogen-BODIPY and -hydroxyphenylboronic acid in a one-pot process, leveraging SAr nucleophilic substitution in conjunction with Suzuki coupling to afford diarenofuran []-fused BODIPYs (-) with commendable yields (85-95%) and short reaction times (0.5-1.0 h).

View Article and Find Full Text PDF

Stereoselective alkene 1,2-difunctionalization is a privileged strategy to access three-dimensional C(sp)-rich chiral molecules from readily available "flat" carbon feedstocks. State-of-the-art approaches exploit chiral transition metal-catalysts to enable high levels of regio- and stereocontrol. However, this is often achieved at the expense of a limited alkene scope and reduced generality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!