Most biologic effects of immune complexes are mediated through the activation of the complement system. The relationship between lupus disease activity and the presence of C3 breakdown products (C3d) and circulating immune complexes (CIC) as demonstrated with the C1q binding assay (C1qbA), was evaluated. Nearly all 13 systemic lupus erythematosus (SLE) patients had a stable disease course in this prospective study, nevertheless, in each patient the profiles of the serologic parameters were quite different. Despite the small number of investigated patients (13), it is concluded that irrespective of the disease activity, the serologic parameters could be either positive or negative. No relationship could be obtained between disease activity and the presence of C3d and/or CIC. Nor was there any evidence that the presence of CIC would indicate increased levels of C3 breakdown products (C3d). This observation argues against a pathogenetic significance of CIC detected by the C1qbA in SLE. In conclusion, the supposed link between the presence of CIC, consumption and activation of the complement system, and the activity of SLE needs further study.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00541339DOI Listing

Publication Analysis

Top Keywords

disease activity
16
immune complexes
12
breakdown products
12
products c3d
12
circulating immune
8
systemic lupus
8
lupus erythematosus
8
prospective study
8
activation complement
8
complement system
8

Similar Publications

Outcomes for Children With Congenital Heart Disease Undergoing Ventricular Assist Device Implantation: An ACTION Registry Analysis.

J Am Coll Cardiol

December 2024

Division of Cardiology, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.

Background: There are no contemporary reports that highlight the national outcomes for children with congenital heart disease (CHD) undergoing ventricular assist device (VAD) implantation.

Objectives: This study sought to evaluate differences in VAD outcomes for children with CHD to those with non-CHD as well as those with univentricular CHD to those with biventricular CHD.

Methods: Data for CHD and non-CHD patients from the multicenter ACTION (Advanced Cardiac Therapies Improving Outcomes Network) undergoing VAD implantation from April 2018 to February 2023 were included.

View Article and Find Full Text PDF

Coinfections with porcine circovirus types 2, 3, and 4 (PCV2, PCV3, and PCV4) are increasingly being detected in the swine industry. However, there is no commercially available vaccine which prevents coinfection with PCV2, PCV3, and PCV4. The development of a vaccine expressing capsid (Cap) fusion proteins of multiple PCVs represents a promising approach for broadly preventing infection with PCVs.

View Article and Find Full Text PDF

Metformin, a widely used antidiabetic medication, has emerged as a promising broad-spectrum antiviral agent due to its ability to modulate cellular pathways essential for viral replication. By activating AMPK, metformin depletes cellular energy reserves that viruses rely on, effectively limiting the replication of pathogens such as influenza, HIV, SARS-CoV-2, HBV, and HCV. Its role in inhibiting the mTOR pathway, crucial for viral protein synthesis and reactivation, is particularly significant in managing infections caused by HIV, CMV, and EBV.

View Article and Find Full Text PDF

Ebola virus (EBOV) causes severe disease in humans, with mortality as high as 90%. The small-molecule antiviral drug remdesivir (RDV) has demonstrated a survival benefit in EBOV-exposed rhesus macaques. Here, we characterize the efficacy of multiple intravenous RDV dosing regimens on survival of rhesus macaques 42 days after intramuscular EBOV exposure.

View Article and Find Full Text PDF

The ongoing global health crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates the continuous development of innovative vaccine strategies, especially in light of emerging viral variants that could undermine the effectiveness of existing vaccines. In this study, we developed a recombinant virus-like particle (VLP) vaccine based on the Newcastle Disease Virus (NDV) platform, displaying a stabilized prefusion form of the SARS-CoV-2 spike (S) protein. This engineered S protein includes two proline substitutions (K986P, V987P) and a mutation at the cleavage site (RRAR to QQAQ), aimed at enhancing both its stability and immunogenicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!