A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Leopard subspecies conservation under climate and land-use change. | LitMetric

Predicting the effects of global environmental changes on species distribution is a top conservation priority, particularly for large carnivores, that contribute to regulating and maintaining ecosystems. As the most widespread and adaptable large felid, ranging across Africa and Asia, leopards are crucial to many ecosystems as both keystone and umbrella species, yet they are threatened across their ranges. We used intraspecific species distribution models (SDMs) to predict changes in range suitability for leopards under future climate and land-use change and identify conservation gaps and opportunities. We generated intraspecific SDMs for the three western leopard subspecies, the African, ; Arabian, ; and Persian, , leopards, and overlapped predictions with protected areas (PAs) coverage. We show that leopard subspecies differ in their environmental associations and vulnerability to future changes. The African and Arabian leopards are predicted to lose ~25% and ~14% of their currently suitable range, respectively, while the Persian leopard is predicted to experience ~12% range gains. We found that most areas predicted to be suitable were not protected, with only 4%-16% of the subspecies' ranges falling inside PAs, and that these proportions will decrease in the future. The highly variable responses we found between leopard subspecies highlight the importance of considering intraspecific variation when modelling vulnerability to climate and land-use changes. The predicted decrease in proportion of suitable ranges falling inside PAs threatens global capacity to effectively conserve leopards because survival rates are substantially lower outside PAs due to persecution. Hence, it is important to work with local communities to address negative human-wildlife interactions and to restore habitats to retain landscape connectivity where PA coverage is low. On the other hand, the predicted increase in range suitability across southern Europe presents opportunities for expansion outside of their contemporary range, capitalising on European rewilding schemes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109047PMC
http://dx.doi.org/10.1002/ece3.11391DOI Listing

Publication Analysis

Top Keywords

leopard subspecies
16
climate land-use
12
land-use change
8
species distribution
8
range suitability
8
african arabian
8
ranges falling
8
falling inside
8
inside pas
8
leopard
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!