A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automated Analysis of Nuclear Parameters in Oral Exfoliative Cytology Using Machine Learning. | LitMetric

Background: As oral cancer remains a major worldwide health concern, sophisticated diagnostic tools are needed to aid in early diagnosis. Non-invasive methods like exfoliative cytology, albeit with the help of artificial intelligence (AI), have drawn additional interest.

Aim: The study aimed to harness the power of machine learning algorithms for the automated analysis of nuclear parameters in oral exfoliative cytology. Further, the analysis of two different AI systems, namely convoluted neural networks (CNN) and support vector machine (SVM), were compared for accuracy.

Methods: A comparative diagnostic study was performed in two groups of patients (n=60). The control group without evidence of lesions (n=30) and the other group with clinically suspicious oral malignancy (n=30) were evaluated. All patients underwent cytological smears using an exfoliative cytology brush, followed by routine Hematoxylin and Eosin staining. Image preprocessing, data splitting, machine learning, model development, feature extraction, and model evaluation were done. An independent t-test was run on each nuclear characteristic, and Pearson's correlation coefficient test was performed with Statistical Package for the Social Sciences (SPSS) software (IBM SPSS Statistics for Windows, Version 28.0. IBM Corp, Armonk, NY, USA).

Results:  The study found substantial variations between the study and control groups in nuclear size (p<0.05), nuclear shape (p<0.01), and chromatin distribution (p<0.001). The Pearson correlation coefficient of SVM was 0.6472, and CNN was 0.7790, showing that SVM had more accuracy.

Conclusion: The availability of multidimensional datasets, combined with breakthroughs in high-performance computers and new deep-learning architectures, has resulted in an explosion of AI use in numerous areas of oncology research. The discerned diagnostic accuracy exhibited by the SVM and CNN models suggests prospective improvements in early detection rates, potentially improving patient outcomes and enhancing healthcare practices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110917PMC
http://dx.doi.org/10.7759/cureus.58744DOI Listing

Publication Analysis

Top Keywords

exfoliative cytology
16
machine learning
12
automated analysis
8
analysis nuclear
8
nuclear parameters
8
parameters oral
8
oral exfoliative
8
nuclear
4
oral
4
exfoliative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!