Coordination Engineering of Carbon Dots and Mn in Co-Based Phosphides for Highly Efficient Seawater Splitting at Ampere-Level Current Density.

Small

Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.

Published: October 2024

Direct electrolysis of seawater to generate hydrogen is an attractive approach for storing renewable energy. However, direct seawater splitting suffers from low current density and limited operating stability, which severely hinders its industrialization. Herein, a promising strategy is reported to obtain a nano needle-like array catalyst-CDs-Mn-CoP on nickel foam, in which the Mn─O─C bond tightly binds Mn, Carbon dots (CDs), and CoP together. The coordination engineering of CDs and Mn not only effectively regulates the electronic structure of CoP, but also endows the as-prepared catalyst with selectivity and marked long-term stability at ampere-level current density. Low overpotentials of 208 and 447 mV are required to achieve 1000 mA cm for hydrogen evolution reaction (HER) and Oxygen evolution reaction (OER) in simulated seawater, respectively. Cell potentials of 1.78 and 1.86 V are needed to reach 500 and 1000 mA cm in alkaline seawater along with excellent durability for 350 h. DFT studies have verified that the introduction of Mn and CDs effectively shifts the d-band center of Co-3d toward higher energy, thereby strengthening the adsorption of intermediates and enhancing the catalytic activity. This study sheds light on the development of highly effective and stable catalysts for large-scale seawater electrolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202402478DOI Listing

Publication Analysis

Top Keywords

current density
12
coordination engineering
8
carbon dots
8
seawater splitting
8
ampere-level current
8
cds effectively
8
evolution reaction
8
seawater
6
engineering carbon
4
dots co-based
4

Similar Publications

The complex topography of the mountain cities leads to uneven distribution of land resources. Currently, available studies mainly focuse on land use and landscape patterns (LU and LP) in plains or plateaus. Thus, it is necessary to carry out an analysis of the drivers of changes in LU and LP in mountain cities.

View Article and Find Full Text PDF

The current research aims to determine the impact of orange peel dye (OPD), an eco-friendly addition, on the optical properties of biodegradable polymers. This study investigates the enhancement of optical properties in solid electrolytes based on chitosan (CS) and glycerol, with varying OPD concentrations. UV-Vis-NIR spectroscopy revealed significantly enhanced UV-visible light absorption in the 200-500 nm region and effective UV light blocking.

View Article and Find Full Text PDF

Discarded floral foam as a source for green preparation of sustainable adsorbent for quick and efficient removal of phenoxyacetic acid herbicides from waters.

J Hazard Mater

January 2025

College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361005, China. Electronic address:

Due to the high toxicity and increasing consumption, efficient removal of phenoxyacetic acid herbicides (PAAHs) from water is imperative. In current study, a new adsorbent was prepared by modifying porous carbon derived from disused floral foam with chitosan (CS) (ACFC). Density functional theory (DFT) calculation uncovered that the amino and hydroxyl groups in the introduced CS played a critical role in the efficient adsorption of ACFC towards PAAHs.

View Article and Find Full Text PDF

Liver fibrosis is a persistent damage repair response triggered by various etiological factors, resulting in an excessive accumulation of extracellular matrix (ECM). Activated hepatic stellate cells (HpSCs) are the primary source of ECM proteins. Therefore, specifically targeting HpSCs has become a crucial approach for treating liver fibrosis.

View Article and Find Full Text PDF

Electrochemical pH modulator coupled with Ni-based electrode for glucose sensing.

Talanta

January 2025

Université de Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour Les Matériaux et L'Environnement (LCPME), Nancy F-54000, France.

The non-enzymatic electrochemical detection of glucose by direct oxidation using electrodes modified with suitable electrocatalysts is now well-established. However, it most often requires highly alkaline media, limiting dramatically the use of such electrodes at neutral pH. This is notably the case of Ni-based electrodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!