Introduction: Kartogenin (KGN) is a synthetic small molecule that stimulates chondrogenic cellular differentiation by activating smad-4/5 pathways. KGN has been proposed as a feasible alternative to expensive biologic growth factors, such as transforming growth factor β, which remain under strict regulatory scrutiny when it comes to use in patients.
Method: This study reports the previously unexplored effects of KGN stimulation on cartilage- derived mesenchymal progenitor cells (CPCs), which have been shown to be effective in applications of cell-based musculoskeletal tissue regeneration. Our findings demonstrate that KGN treatment significantly increased markers of chondrogenesis, SOX9 and COL2 following 3-10 days of treatment in human CPCs.
Result: KGN treatment also resulted in a significant dose-dependent increase in GAG production in CPCs. The same efficacy was not observed in human marrow-derived stromal cells (BM-MSCs); however, KGN significantly reduced mRNA expression of cell hypertrophy markers, COL10 and MMP13, in BM-MSCs. Parallel to these mRNA expression results, KGN led to a significant decrease in protein levels of MMP-13 both at 0-5 days and 5-10 days following KGN treatment.
Conclusion: In conclusion, this study demonstrates that KGN can boost the chondrogenicity of CPCs and inhibit hypertrophic terminal differentiation of BM-MSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579248 | PMC |
http://dx.doi.org/10.2174/011574888X314971240511151616 | DOI Listing |
Int Immunopharmacol
December 2024
Departments of Gynaecology and Obstetrics, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China. Electronic address:
Cell Signal
December 2024
Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China; School of Life Sciences, Ningxia University, Yinchuan 750021, China. Electronic address:
Objective: Polycystic ovary syndrome (PCOS) is a metabolic and endocrine disease that entails dysregulated ovulation, hyperandrogenism, and polycystic ovaries. While Wnt5a has been suggested to play key roles in follicular development and female fertility under normal conditions, its functions in the context of PCOS have yet to be established. This study was thus designed to explore the impact of Wnt5a on ovarian granulosa cell autophagy in PCOS, providing in vitro evidence in support of its role in this setting.
View Article and Find Full Text PDFCell Biol Toxicol
December 2024
Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
Chemotherapy is essential for treating malignant tumors, but it can cause premature ovarian insufficiency (POI). Recent studies suggest that exosomes enriched with miR-21 (miR-21-Exo) may help mitigate POI, though the underlying mechanisms remain largely unexplored. This research investigates how miR-21-Exo influences chemotherapy-induced POI using an experimental model where KGN cells are exposed to cisplatin.
View Article and Find Full Text PDFJ Ovarian Res
December 2024
Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
Polycystic ovary syndrome (PCOS) is among the most prevalent endocrine and metabolic disorders affecting women of reproductive age. Multiple factors, including genetic predisposition, environmental influences, and lifestyle choices, are considered significant contributors to the development of PCOS. A kind of long noncoding RNA-C-Terminal binding protein 1 antisense (lncRNA CTBP1-AS) has been proven to be a new androgen receptor regulator.
View Article and Find Full Text PDFEur J Med Res
December 2024
Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhouing, China.
Objective: Ovarian tissue cryopreservation has become a promising alternative for fertility preservation in cancer patients, allowing ovarian tissue to be stored for future autotransplantation. Oxidative stress damage occurring during the cryopreservation process may impact tissue quality and function. This study aims to investigate the protective effects and potential mechanisms of Mitoquinone (MitoQ), a mitochondria-targeted derivative of the antioxidant ubiquinone, during the vitrification of ovarian tissue in mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!