Background: Definitive local therapy with stereotactic ablative radiation therapy (SABR) for ultracentral lung lesions is associated with a high risk of toxicity, including treatment related death. Stereotactic MR-guided adaptive radiation therapy (SMART) can overcome many of the challenges associated with SABR treatment of ultracentral lesions.

Methods: We retrospectively identified 14 consecutive patients who received SMART to ultracentral lung lesions from 10/2019 to 01/2021. Patients had a median distance from the proximal bronchial tree (PBT) of 0.38 cm. Tumors were most often lung primary (64.3%) and HILUS group A (85.7%). A structure-specific rigid registration approach was used for cumulative dose analysis. Kaplan-Meier log-rank analysis was used for clinical outcome data and the Wilcoxon Signed Rank test was used for dosimetric data.

Results: Here we show that SMART dosimetric improvements in favor of delivered plans over predicted non-adapted plans for PBT, with improvements in proximal bronchial tree DMax of 5.7 Gy (p = 0.002) and gross tumor 100% prescription coverage of 7.3% (p = 0.002). The mean estimated follow-up is 17.2 months and 2-year local control and local failure free survival rates are 92.9% and 85.7%, respectively. There are no grade ≥ 3 toxicities.

Conclusions: SMART has dosimetric advantages and excellent clinical outcomes for ultracentral lung tumors. Daily plan adaptation reliably improves target coverage while simultaneously reducing doses to the proximal airways. These results further characterize the therapeutic window improvements for SMART. Structure-specific rigid dose accumulation dosimetric analysis provides insights that elucidate the dosimetric advantages of SMART more so than per fractional analysis alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111790PMC
http://dx.doi.org/10.1038/s43856-024-00526-7DOI Listing

Publication Analysis

Top Keywords

ultracentral lung
16
structure-specific rigid
12
radiation therapy
12
lung lesions
12
rigid dose
8
dose accumulation
8
accumulation dosimetric
8
dosimetric analysis
8
adaptive radiation
8
proximal bronchial
8

Similar Publications

Purpose: To use imaging data from stereotactic MR-guided online adaptive radiotherapy (SMART) of ultracentral lung tumors (ULT) for development of a safe non-adaptive approach towards stereotactic body radiotherapy (SBRT) of ULT.

Patients And Methods: Analysis is based on 19 patients with ULT who received SMART (10 × 5.0-5.

View Article and Find Full Text PDF

Stereotactic body radiotherapy has been established as a viable treatment option for inoperable early-stage non-small cell lung cancer or secondary lesions mainly in oligoprogressive/oligometastatic scenarios. Treating lesions in the so-called "no flight zone" has always been challenging and conflicting data never cleared how to safely treat these lesions. This is truer considering ultra-central lesions, i.

View Article and Find Full Text PDF

Background And Purpose: Stereotactic body radiotherapy (SBRT) carries potentially higher risks for ultracentral (UC) NSCLC with limited prospective data to guide decision making. We conducted a secondary analysis from a randomized trial of SBRT and conventionally hypofractionated radiation (CRT) to assess these risks.

Materials And Methods: Patients (n = 233) with medically inoperable stage I NSCLC were recruited from 2014 to 2020.

View Article and Find Full Text PDF

Stereotactic Body Radiation Therapy for Primary Lung Cancer and Metastases: A Case-Based Discussion on Challenging Cases.

Pract Radiat Oncol

October 2024

Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California; Department of Radiation Oncology, City of Hope Orange County Lennar Foundation Cancer Center, Irvine, California. Electronic address:

Purpose: Data informing the safety, efficacy, treatment logistics, and dosimetry of stereotactic body radiation therapy (SBRT) for lung tumors has primarily been derived from patients with favorably located solitary tumors. SBRT is now considered a standard-of-care treatment for inoperable early-stage non-small cell lung cancer and lung metastases, and therefore extrapolation beyond this limited foundational patient population remains an active source of interest.

Methods And Materials: This case-based discussion provides a practical framework for delivering SBRT to challenging, yet frequently encountered, cases in radiation oncology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!