This study was aimed to compare the variability of inter-joint coordination in the lower-extremities during gait between active individuals with transtibial amputation (TTAs) and healthy individuals (HIs). Fifteen active male TTAs (age: 40.6 ± 16.24 years, height: 1.74 ± 0.09 m, and mass: 71.2 ± 8.87 kg) and HIs (age: 37.25 ± 13.11 years, height: 1.75 ± 0.06 m, and mass: 74 ± 8.75 kg) without gait disabilities voluntarily participated in the study. Participants walked along a level walkway covered with Vicon motion capture system, and their lower-extremity kinematics data were recorded during gait. The spatiotemporal gait parameters, lower-extremity joint range of motion (ROM), and their coordination and variability were calculated and averaged to report a single value for each parameter based on biomechanical symmetry assumption in the lower limbs of HIs. Additionally, these parameters were separately calculated and reported for the intact limb (IL) and the prosthesis limb (PL) in TTAs individuals. Finally, a comparison was made between the averaged values in HIs and those in the IL and PL of TTAs subjects. The results showed that the IL had a significantly lower stride length than that of the PL and averaged value in HIs, and the IL had a significantly lower knee ROM and greater stance-phase duration than that of HIs. Moreover, TTAs showed different coordination patterns in pelvis-to-hip, hip-to-knee, and hip-to-ankle couplings in some parts of the gait cycle. It concludes that the active TTAs with PLs walked with more flexion of the knee and hip, which may indicate a progressive walking strategy and the differences in coordination patterns suggest active TTA individuals used different neuromuscular control strategies to adapt to their amputation. Researchers can extend this work by investigating variations in these parameters across diverse patient populations, including different amputation etiologies and prosthetic designs. Moreover, Clinicians can use the findings to tailor rehabilitation programs for TTAs, emphasizing joint flexibility and coordination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111844 | PMC |
http://dx.doi.org/10.1038/s41598-024-62655-2 | DOI Listing |
J Biomech
November 2024
Human Motion Diagnostic Centre, University of Ostrava, Ostrava, Czech Republic; Biomechanics Laboratory, University of Massachusetts, Amherst, MA, USA. Electronic address:
Understanding the intricacies of human movement coordination and variability during running is crucial to unraveling the dynamics of locomotion, identifying potential injury mechanisms and understanding skill development. Identification of minimum number of cycles for calculation of reliable coordination and its variability could help with better test organization and efficient assessment time. By adopting a cross-sectional study design, this study investigated the minimum required cycles for calculating hip-knee, hip-ankle and knee-ankle coordination and their variability using a continuous relative phase (CRP) method.
View Article and Find Full Text PDFGait Posture
October 2024
Faculty of Sports Science, Ningbo University, Ningbo, China; Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Research Academy of Medicine Combining Sports, Ningbo NO.2 Hospital, Ningbo, China. Electronic address:
Gait Posture
October 2024
Institute of Human Factors and Ergonomics, Shenzhen University, China. Electronic address:
Background: Trips are one of the most common external perturbations that can lead to accidental falls. Knowledge about postural control attributes of balance recovery after trips could help reveal the biomechanical causes for trip-induced falls and provide implications for fall prevention interventions.
Research Question: The objective of the present study was to examine coordinated lower-limb movements during balance recovery after trips.
Neurorehabil Neural Repair
September 2024
Department of Cognitive and Brain Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel.
Background: It has long been of interest to characterize the components of the motor abnormality in the arm after stroke. One approach has been to decompose the hemiparesis phenotype into negative signs, such as weakness, and positive signs, such as intrusion of synergies. We sought to identify the contributions of weakness and flexor synergy to motor deficits in sub-acute stroke.
View Article and Find Full Text PDFAnn Clin Transl Neurol
September 2024
Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany.
Objective: The corticospinal tract (CST) is considered the most important motor output pathway comprising fibers from the primary motor cortex (M1) and various premotor areas. Damage to its descending fibers after stroke commonly leads to motor impairment. While premotor areas are thought to critically support motor recovery after stroke, the functional role of their corticospinal output for different aspects of post-stroke motor control remains poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!