A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel plant type, leaf disease and severity identification framework using CNN and transformer with multi-label method. | LitMetric

The growth of plants is threatened by numerous diseases. Accurate and timely identification of these diseases is crucial to prevent disease spreading. Many deep learning-based methods have been proposed for identifying leaf diseases. However, these methods often combine plant, leaf disease, and severity into one category or treat them separately, resulting in a large number of categories or complex network structures. Given this, this paper proposes a novel leaf disease identification network (LDI-NET) using a multi-label method. It is quite special because it can identify plant type, leaf disease and severity simultaneously using a single straightforward branch model without increasing the number of categories and avoiding extra branches. It consists of three modules, i.e., a feature tokenizer module, a token encoder module and a multi-label decoder module. The LDI-NET works as follows: Firstly, the feature tokenizer module is designed to enhance the capability of extracting local and long-range global contextual features by leveraging the strengths of convolutional neural networks and transformers. Secondly, the token encoder module is utilized to obtain context-rich tokens that can establish relationships among the plant, leaf disease and severity. Thirdly, the multi-label decoder module combined with a residual structure is utilized to fuse shallow and deep contextual features for better utilization of different-level features. This allows the identification of plant type, leaf disease, and severity simultaneously. Experiments show that the proposed LDI-NET outperforms the prevalent methods using the publicly available AI challenger 2018 dataset.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111674PMC
http://dx.doi.org/10.1038/s41598-024-62452-xDOI Listing

Publication Analysis

Top Keywords

leaf disease
24
disease severity
20
plant type
12
type leaf
12
multi-label method
8
plant leaf
8
number categories
8
severity simultaneously
8
feature tokenizer
8
tokenizer module
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!