Behaviors can vary throughout an animal's life and this variation can often be explained by changes associated with learning and/or maturing. Currently, there is little consensus regarding how these processes interact to affect behaviors. Here we proposed a heuristic approach to disentangle the effects of learning and maturation on behavior and applied it to the predatory behaviors of Physocyclus globosus spiderlings. We varied the degree of prey difficulty and familiarity spiderlings received along the first instar and across the molt to the second instar and quantified the time spiderlings spent wrapping prey, as a proxy for prey capture efficiency. We found no overall evidence for learning or maturation. Changes in efficiency were mainly due to the switch from difficult to easy prey, or vice versa. However, there was one treatment where spiderlings improved in efficiency before and after the molt, without a switch in prey type. This provides some indication that difficult prey may offer more opportunity for learning or maturation to impact behavior. Although we found little effect of learning or maturation on prey capture efficiency, we suggest that our heuristic approach is effective and could be useful in investigating these processes in other behaviors and other animals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111793PMC
http://dx.doi.org/10.1038/s41598-024-61252-7DOI Listing

Publication Analysis

Top Keywords

learning maturation
20
prey capture
12
prey
8
heuristic approach
8
capture efficiency
8
learning
6
maturation
5
heuristic test
4
test reveals
4
reveals learning
4

Similar Publications

Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying CA1 PC differentiation and the development of this inhibitory circuit motif.

View Article and Find Full Text PDF

Background: Disrupted balance between amyloidogenic and non-amyloidogenic pathways leads to cognitive decline in Alzheimer's disease (AD). Evidence suggests vitamin A (VA) supplementation favors the non-amyloidogenic pathway through upregulation of α-secretase. Originally used to map embryonic retinoic acid (RA) signaling, RARE-LacZ mice possess multiple LacZ genes controlled by retinoic acid response elements (RAREs).

View Article and Find Full Text PDF

Single cells are typically typed by clustering into discrete locations in reduced dimensional transcriptome space. Here we introduce Stator, a data-driven method that identifies cell (sub)types and states without relying on cells' local proximity in transcriptome space. Stator labels the same single cell multiply, not just by type and subtype, but also by state such as activation, maturity or cell cycle sub-phase, through deriving higher-order gene expression dependencies from a sparse gene-by-cell expression matrix.

View Article and Find Full Text PDF

Supervised multi-frame dual-channel denoising enables long-term single-molecule FRET under extremely low photon budget.

Nat Commun

January 2025

State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.

Camera-based single-molecule techniques have emerged as crucial tools in revolutionizing the understanding of biochemical and cellular processes due to their ability to capture dynamic processes with high precision, high-throughput capabilities, and methodological maturity. However, the stringent requirement in photon number per frame and the limited number of photons emitted by each fluorophore before photobleaching pose a challenge to achieving both high temporal resolution and long observation times. In this work, we introduce MUFFLE, a supervised deep-learning denoising method that enables single-molecule FRET with up to 10-fold reduction in photon requirement per frame.

View Article and Find Full Text PDF

Understanding the spatial and temporal dynamics of gene expression is crucial for unraveling molecular mechanisms underlying various biological processes. While traditional methods have offered insights into gene expression patterns, they primarily focus on mature mRNA transcripts, lacking real-time visualization of newly synthesized or nascent transcription events. Recent advancements in monitoring nascent transcription in live cells provide valuable insights into transcriptional dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!