Three Perovskite Phases with Different Cation Orders in SmMnMn(MnSb)O.

Chemistry

Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan.

Published: July 2024

Cation order, which can be controlled by synthesis conditions and stoichiometry, plays an important role in properties of perovskite materials. Here we show that aliovalent doping by Sb in SmMnMn(MnSb)O quadruple perovskite solid solutions can control cation orders in both A and B sites. Samples with 0.4≤x≤2 were synthesized by a high-pressure, high-temperature method at 6 GPa and 1770 K. Three regions with different cation orders were found at 0.5≤x≤1.0, x=1.5-1.6, and x=1.8. The 0.5≤x≤1.0 compositions have a B-site-disordered and A-site columnar-ordered structure with space group P4/nmc; the x=1.5 and 1.6 samples have a B-site rock-salt-ordered and A-site columnar-ordered structure with space group P4/n; the x=1.8 sample has a B-site rock-salt-ordered and A-site-disordered structure with space group P2/n. All the samples show one ferrimagnetic transition: T increases from 35 K to 73 K for 0.5≤x≤1.0, T=81 K for x=1.5 and 1.6, and T=53 K for x=1.8.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202401960DOI Listing

Publication Analysis

Top Keywords

cation orders
12
structure space
12
space group
12
a-site columnar-ordered
8
columnar-ordered structure
8
b-site rock-salt-ordered
8
three perovskite
4
perovskite phases
4
cation
4
phases cation
4

Similar Publications

In the integrated circuit manufacturing process, reverse osmosis (RO) membranes are widely used for wastewater reclamation. However, fouling by typical surfactants significantly reduces membrane efficiency and lifespan. This study investigates the fouling mechanisms of typical surfactants-cetyl trimethyl ammonium bromide (CTAB, cationic), sodium dodecyl sulfate (SDS, anionic), and polyoxyethylene octyl phenyl ether (TX, nonionic)-on RO membranes.

View Article and Find Full Text PDF

Transport mechanisms of the anthropogenic contaminant sulfamethoxazole in volcanic ash soils at equilibrium pH evaluated using the HYDRUS-1D model.

J Hazard Mater

January 2025

Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile; Instituto para el Desarrollo Sustentable, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile; Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Santiago, Chile. Electronic address:

The volcanic soils in Chile, where a significant portion of agricultural activities take place, are impacted by the presence of veterinary drugs, including sulfamethoxazole (SMX). The study examines how different soil types influence the movement and retention of sulfamethoxazole (SMX) across four regions of Chile, focusing on conditions at a neutral pH of 7.0.

View Article and Find Full Text PDF

Extending the MST Model to Large Biomolecular Systems: Parametrization of the ddCOSMO-MST Continuum Solvation Model.

J Comput Chem

January 2025

Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Barcelona, Spain.

Continuum solvation models such as the polarizable continuum model and the conductor-like screening model are widely used in quantum chemistry, but their application to large biosystems is hampered by their computational cost. Here, we report the parametrization of the Miertus-Scrocco-Tomasi (MST) model for the prediction of hydration free energies of neutral and ionic molecules based on the domain decomposition formulation of COSMO (ddCOSMO), which allows a drastic reduction of the computational cost by several orders of magnitude. We also introduce several novelties in MST, like a new definition of atom types based on hybridization and an automatic setup of the cavity for charged regions.

View Article and Find Full Text PDF

The physicochemical and adsorption properties of granular sorbents based on natural bentonite and modified sorbents based on it have been studied. It was found that modification of natural bentonite with iron (III) polyhydroxocations (mod. 1_Fe_5 GA) and aluminum (III) (mod.

View Article and Find Full Text PDF

Cationic gemini surfactants are used due to their broad spectrum of activity, especially surface, anticorrosive and antimicrobial properties. Mixtures of cationic and anionic surfactants are also increasingly described. In order to investigate the effect of anionic additive on antimicrobial activity, experimental studies were carried out to obtain MIC (minimal inhibitory concentration) against and bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!