Gradient boosted regression as a tool to reveal key drivers of temporal dynamics in a synthetic yeast community.

FEMS Microbiol Ecol

Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Private Bag X1, Stellenbosch University, Stellenbosch 7600, South Africa.

Published: June 2024

Microbial communities are vital to our lives, yet their ecological functioning and dynamics remain poorly understood. This understanding is crucial for assessing threats to these systems and leveraging their biotechnological applications. Given that temporal dynamics are linked to community functioning, this study investigated the drivers of community succession in the wine yeast community. We experimentally generated population dynamics data and used it to create an interpretable model with a gradient boosted regression tree approach. The model was trained on temporal data of viable species populations in various combinations, including pairs, triplets, and quadruplets, and was evaluated for predictive accuracy and input feature importance. Key findings revealed that the inoculation dosage of non-Saccharomyces species significantly influences their performance in mixed cultures, while Saccharomyces cerevisiae consistently dominates regardless of initial abundance. Additionally, we observed multispecies interactions where the dynamics of Wickerhamomyces anomalus were influenced by Torulaspora delbrueckii in pairwise cultures, but this interaction was altered by the inclusion of S. cerevisiae. This study provides insights into yeast community succession and offers valuable machine learning-based analysis techniques applicable to other microbial communities, opening new avenues for harnessing microbial communities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212668PMC
http://dx.doi.org/10.1093/femsec/fiae080DOI Listing

Publication Analysis

Top Keywords

yeast community
12
microbial communities
12
gradient boosted
8
boosted regression
8
temporal dynamics
8
community succession
8
dynamics
5
community
5
regression tool
4
tool reveal
4

Similar Publications

During the late laying period, the intestinal barrier of laying hens is susceptible to damage, resulting in enteric infections and even systemic inflammatory responses, posing a major challenge for the poultry industry. Therefore, it is crucial to investigate methods for addressing intestinal inflammation in late laying hens. In order to maximize the production potential of egg laying chickens, farmers usually use various feed additives to prevent damage to the intestinal barrier.

View Article and Find Full Text PDF

Background And Purpose: Onychomycosis is a common fungal infection that affects the nails, caused by various fungal agents. Moreover, yeast onychomycosis has increased in recent years. Yeast isolates might not be identified at the species level by conventional methods, whereas molecular methods can identify yeast isolates more accurately.

View Article and Find Full Text PDF

Background And Purpose: Plants are crucial habitats for fungus communities as they provide an appropriate physical environment for the growth and reproduction of the yeast microbiome. Varieties of pathogenic and non-pathogenic yeast could be found in trees. Although species are the most common pathogenic yeasts associated with trees, other yeasts also grow on trees and are critical to human health.

View Article and Find Full Text PDF

J-domain proteins (JDPs) are essential cochaperones of heat shock protein 70 (Hsp70), as they bind and deliver misfolded polypeptides while also stimulating ATPase activity, thereby mediating the refolding process and assisting Hsp70 in maintaining cellular proteostasis. Despite their importance, detailed structural information about JDP‒Hsp70 complexes is still being explored due to various technical challenges. One major challenge is the lack of more detailed structural data on full-length JDPs.

View Article and Find Full Text PDF

Plant-microbe associations are ubiquitous, but parsing contributions of dispersal, host filtering, competition and temperature on microbial community composition is challenging. Floral nectar-inhabiting microbes, which can influence flowering plant health and pollination, offer a tractable system to disentangle community assembly processes. We inoculated a synthetic community of yeasts and bacteria into nectars of 31 plant species while excluding pollinators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!