Enhancement of PLA crystallization, transparency, and strength by adding the long aliphatic chains grafted CNC.

Int J Biol Macromol

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.

Published: June 2024

The combination of crystallization, transparency, and strength is still a challenge for broadening the application of polylactic acid (PLA) films, while it is also difficult to balance. In this work, the long aliphatic chains of octadecylamine (ODA) were grafted onto the surface of cellulose nanocrystal (CNC) by tannic acid oxidation self-polymerization and Michael addition/Schiff base reaction between polytannic acid and ODA. Furthermore, the ODA grafted CNC (g-CNC) was used as green reinforcement for the PLA matrix and a series of PLA/g-CNC nanocomposite films were prepared by the casting method. The DSC, WAXD, POM, UV-vis and stretching test were employed to examine the effect of g-CNC on the properties of the as-prepared PLA/g-CNC nanocomposite films. It shows that the g-CNC is effective to improve the melt crystallization rate of PLA from 11 min to 7.3 min. Most importantly, the crystal size of the PLA spherulites was significantly reduced due to the well dispersion in the amorphous PLA matrix, which would effectively improve the transmittance of the PLA films and synchronously realize the combination of crystallization (62 %) and transparency (80.6 %). Moreover, the improved crystallization could also enhance the heat deformation performance of the PLA films since the heat resistance is closely associated with the crystallinity. Besides, the grafted ODA long chains improve the compatibility between CNC and PLA, leading to the reinforcement of PLA matrix, where the tensile strength reaches 65.05 MPa from 44.31 MPa. Compared with the pristine CNC, the addition of g-CNC makes more comprehensive improvement in the properties of the PLA films.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.132223DOI Listing

Publication Analysis

Top Keywords

pla films
16
pla matrix
12
pla
10
crystallization transparency
8
transparency strength
8
long aliphatic
8
aliphatic chains
8
grafted cnc
8
combination crystallization
8
oda grafted
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!