Introducing terminal alkyne groups at the reducing end of cellulose nanocrystals by aldimine condensation for further click reaction.

Int J Biol Macromol

College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.

Published: June 2024

In recent years, click reactions with cellulose nanocrystals (CNC) participation have gradually become a research hotspot. Carboxylamine condensation is the most used method to introduce terminal alkyne groups at the reducing end of CNC as reaction sites for click reactions. However, hydroxyl groups on CNC surface would be slightly oxidized during the carboxyamine condensation process, inducing the potential positions of introduced alkynes would be not only at the reducing end but also on CNC surface. Here, aldimine condensation was proposed to introduce terminal alkyne groups just at the reducing end of CNC, and a systematic comparison analysis was conducted with carboxylamine condensation. Firstly, the selectivity and extent of alkynylation were characterized by XPS and EA. Secondly, the end aldehyde content in these CNC samples was measured by the BCA method, which quantitatively explained the grafting efficiency of aldimine condensation and further verified its feasibility. Thirdly, the clickability of the modified CNC samples was confirmed through XPS analysis of the products after a pre-designed click reaction. In sum, aldimine condensation was proven to be a simple and effective strategy for introducing terminal alkyne groups at the reducing end of CNC, which could be used as reaction sites for further click reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.131983DOI Listing

Publication Analysis

Top Keywords

terminal alkyne
16
alkyne groups
16
groups reducing
16
aldimine condensation
16
reducing cnc
16
click reactions
12
introducing terminal
8
cellulose nanocrystals
8
click reaction
8
cnc
8

Similar Publications

Zero-Valent Copper Catalysis Enables Regio- and Stereoselective Difunctionalization of Alkynes.

Angew Chem Int Ed Engl

January 2025

Jain University - Ramanagara Campus, Centre for Nano and Material Sciences, Jakkasandra Post Kanakapura Taluk, Ramanagara-562112, Bangalore, 562112, Bangalore, INDIA.

The development of a metallic copper-based catalyst system remains a significant challenge. Herein, we report the synthesis of highly stable, active, and reusable Cu0 catalyst for the carboboration of alkynes using carbon electrophiles and bis(pinacolato)diboron (B2pin2) as chemical feedstocks to afford di- and trisubstituted vinylboronate esters in a regio- and stereoselective manner with appreciable turnover number (TON) of up to 2535 under mild reaction conditions. This three-component coupling reaction works well with a variety of substituted electrophiles and alkynes with broad functional group tolerance.

View Article and Find Full Text PDF

From Pseudocyclic to Macrocyclic Ionophores: Strategies toward the Synthesis of Cyclic Monensin Derivatives.

J Org Chem

January 2025

Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.

There has been a long search for a simple preparation of new cyclic analogues of ionophore antibiotics. We report a simple and general synthesis of three new cyclic derivatives of polyether ionophore, monensin A (MON). The application of the Huisgen 1,3-dipolar cycloaddition of azides and terminal alkynes to macrocyclization results in a concise, synthetic route to monensin lacton or lactam in only 4 steps.

View Article and Find Full Text PDF

In this work, coixalkyne A (), a natural polynuclear calcium complex with a novel cross-shaped molecular architecture, was isolated from L. along with the undescribed analogue coixalkyne B (). Their structures were identified by means of NMR spectroscopy, ECD calculations, and single-crystal X-ray diffraction.

View Article and Find Full Text PDF

The reaction between 1,3-bis(3,5-dimethylpyrazolylmethyl)hexahydropyrimidine L and Mo(CO) in CHCN at 130 °C afforded a binuclear Mo(0) complex 1 containing a new macrocycle formed upon C-N bond cleavage in L in good yield. Conversely, a clean reaction takes place between L and [Mo(CO)(COD)] in THF at 60 °C to give a new metalloligand complex [Mo(CO)(κ-,-L)] 2 containing a spectator pyrazole arm in 83% yield. Their structures were determined by X-ray diffraction methods, and a plausible mechanism is proposed for the C-N bond cleavage leading to complex 1.

View Article and Find Full Text PDF

Metal-organic frameworks generated from oligomeric ligands with functionalized tethers.

Chem Sci

December 2024

Department of Chemistry and Biochemistry, University of California, San Diego La Jolla California 92093 USA

Metal-organic frameworks (MOFs) can be prepared from oligomeric organic ligands to prepare materials referred to as oligoMOFs. Studies of oligoMOFs are relatively limited, with most existing reports focused on fundamental structure-property relationships. In this report, functional groups, such as terminal alkynes and pyridine groups, are installed on the tether between 1,4-benzene dicarboxylic acid (Hbdc) groups of the dimer ligands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!