Biodegradation is difficult at high temperatures due to the limited capacity of microorganisms to survive and function outside their optimum temperature range. Here, a thermophilic petroleum-degrading consortium was enriched from compost at a temperature of 55 °C. 16S rDNA and metagenomic techniques were used to analyze the composition of the consortium and the mechanisms of degradation. The consortium degraded 17000 mg total petroleum hydrocarbons (TPHs) L with a degradation efficiency of 81.5% in 14 days. The consortium utilized a range of substrates such as n-hexadecane, n-docosane, naphthalene and pyrene and grew well over a wide range of pH (4-10) and salinity (0-90 g L). The hydrocarbon-degrading extremophilic consortium contained, inter alia, (relative abundance >1%) Caldibacillus, Geobacillus, Mycolicibacterium, Bacillus, Chelatococcus, and Aeribacillus spp. Metagenomic analysis was conducted to discover the degradation and environmental tolerance functional genes of the consortium. Two alkane hydroxylase genes, alkB and ladA, were found. A microcosm study shows that the consortium promoted the bioremediation of soil TPHs. The results indicate that the consortium may be a good candidate for the high-temperature bioremediation of petroleum-contaminated soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.142379 | DOI Listing |
Nat Genet
January 2025
Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
Segmental duplications (SDs) contribute significantly to human disease, evolution and diversity but have been difficult to resolve at the sequence level. We present a population genetics survey of SDs by analyzing 170 human genome assemblies (from 85 samples representing 38 Africans and 47 non-Africans) in which the majority of autosomal SDs are fully resolved using long-read sequence assembly. Excluding the acrocentric short arms and sex chromosomes, we identify 173.
View Article and Find Full Text PDFNature
January 2025
Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
Germline BRCA2 loss-of function variants, which can be identified through clinical genetic testing, predispose to several cancers. However, variants of uncertain significance limit the clinical utility of test results. Thus, there is a need for functional characterization and clinical classification of all BRCA2 variants to facilitate the clinical management of individuals with these variants.
View Article and Find Full Text PDFNat Commun
January 2025
Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany.
Post-translational modifications (PTMs) play pivotal roles in regulating cellular signaling, fine-tuning protein function, and orchestrating complex biological processes. Despite their importance, the lack of comprehensive tools for studying PTMs from a pathway-centric perspective has limited our ability to understand how PTMs modulate cellular pathways on a molecular level. Here, we present PTMNavigator, a tool integrated into the ProteomicsDB platform that offers an interactive interface for researchers to overlay experimental PTM data with pathway diagrams.
View Article and Find Full Text PDFNat Commun
January 2025
Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
Uncertainty remains regarding the role of diet in colorectal cancer development. We examined associations of 97 dietary factors with colorectal cancer risk in 542,778 Million Women Study participants (12,251 incident cases over 16.6 years), and conducted a targeted genetic analysis in the ColoRectal Transdisciplinary Study, Colon Cancer Family Registry, and Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO).
View Article and Find Full Text PDFEur J Pediatr
January 2025
Department of Neonatal & Pediatric Intensive Care, Division of Pediatric Intensive Care, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands.
Children with Medical Complexity (CMC) often require 24/7 expert care, which may impede discharge from hospital to home (H2H) resulting in prolonged admission. Limited research exists on pediatric patients with delayed discharges and the underlying reasons for such extended admissions. Therefore, our objectives were to (1) describe the demographics, clinical characteristics, and course of CMC who are in their H2H transition and (2) identify the reasons for postponement of H2H discharge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!