Protein identification and quantification is an important tool for biomarker discovery. With the increased sensitivity and speed of modern mass spectrometers, sample preparation remains a bottleneck for studying large cohorts. To address this issue, we prepared and evaluated a simple and efficient workflow on the Opentrons OT-2 robot that combines sample digestion, cleanup, and loading on Evotips in a fully automated manner, allowing the processing of up to 192 samples in 6 h. Analysis of 192 automated HeLa cell sample preparations consistently identified ∼8000 protein groups and ∼130,000 peptide precursors with an 11.5 min active liquid chromatography gradient with the Evosep One and narrow-window data-independent acquisition (nDIA) with the Orbitrap Astral mass spectrometer providing a throughput of 100 samples per day. Our results demonstrate a highly sensitive workflow yielding both reproducibility and stability at low sample inputs. The workflow is optimized for minimal sample starting amount to reduce the costs for reagents needed for sample preparation, which is critical when analyzing large biological cohorts. Building on the digesting workflow, we incorporated an automated phosphopeptide enrichment step using magnetic titanium-immobilized metal ion affinity chromatography beads. This allows for a fully automated proteome and phosphoproteome sample preparation in a single step with high sensitivity. Using the integrated digestion and Evotip loading workflow, we evaluated the effects of cancer immune therapy on the plasma proteome in metastatic melanoma patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251069 | PMC |
http://dx.doi.org/10.1016/j.mcpro.2024.100790 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!