SbTe, a binary chalcogenide-based 3D topological insulator, attracts significant attention for its exceptional thermoelectric performance. We report the vibrational properties of magnetically doped SbTethermoelectric material. Ni doping induces defect/disorder in the system and plays a positive role in engineering the thermoelectric properties through tuning the vibrational phonon modes. Synchrotron powder x-ray diffraction study confirms good crystalline quality and single-phase nature of the synthesized samples. The change in structural parameters, includingand strain, further corroborate with structural disorder. Detailed modification of phonon modes with doping and temperature variation is analysed from temperature-dependent Raman spectroscopic measurement. Compressive lattice strain is observed from the blue shift of Raman peaks owing to Ni incorporation in Sb site. An attempt is made to extract the lattice thermal conductivity from total thermal conductivity estimated through optothermal Raman studies. Hall concentration data support the change in temperature-dependent resistivity and thermopower. Remarkable increase in thermopower is observed after Ni doping. Simulation of the Pisarenko model, indicating the convergence of the valence band, explains the observed enhancement of thermopower in SbNiTe. The energy gap between the light and heavy valence band at Γ point is found to be 30 meV (for SbTe), which is reduced to 3 meV (in SbNiTe). A significant increase in thermoelectric power factor is obtained from 715 μWmKfor pristine SbTeto 2415 μWmKfor Ni-doped SbTesample. Finally, the thermoelectric figure of merit,is found to increase by four times in SbNiTethan that of its pristine counterpart.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ad4f3bDOI Listing

Publication Analysis

Top Keywords

thermoelectric performance
8
vibrational properties
8
phonon modes
8
thermal conductivity
8
valence band
8
tuning thermoelectric
4
performance modulating
4
modulating vibrational
4
properties ni-doped
4
ni-doped sbte
4

Similar Publications

Enabling ultra-flexible inorganic thin-film-based thermoelectric devices by introducing nanoscale titanium layers.

Nat Commun

January 2025

School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.

Here, we design exotic interfaces within a flexible thermoelectric device, incorporating a polyimide substrate, Ti contact layer, Cu electrode, Ti barrier layer, and thermoelectric thin film. The device features 162 pairs of thin-film legs with high room-temperature performance, using p-BiSbTe and n-BiTeSe, with figure-of-merit values of 1.39 and 1.

View Article and Find Full Text PDF

Non-equilibrium molecular dynamics (NEMD) simulations reveal the existence of a spontaneous heat current (SHC) in the absence of a temperature gradient and demonstrate ultra-high thermal rectification in asymmetric trapezoid-shaped graphene. These unique properties have potential applications in power generation and thermal circuits, functioning as thermal diodes. Our findings also show the presence of negative and zero thermal conductivity in this system.

View Article and Find Full Text PDF

Solvothermally optimizing AgTe/AgS composites with high thermoelectric performance and plasticity.

Mater Horiz

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.

Silver-based fast ionic conductors show promising potential in thermoelectric applications. Among these, AgS offers unique high plasticity but low electrical conductivity, whereas AgTe exhibits high intrinsic electrical conductivity yet faces limitations due to high thermal conductivity and poor plasticity. Developing a composite thermoelectric material that combines the benefits of both is therefore essential.

View Article and Find Full Text PDF

Polymer-dispersed liquid crystals (PDLCs) stand at the intersection of polymer science and liquid crystal technology, offering a unique blend of optical versatility and mechanical durability. These composite materials are composed of droplets of liquid crystals interspersed in a matrix of polymeric materials, harnessing the optical properties of liquid crystals while benefiting from the structural integrity of polymers. The responsiveness of LCs combined with the mechanical rigidity of polymers make polymer/LC composites-where the polymer network or matrix is used to stabilize and modify the LC phase-extremely important for scientists developing novel adaptive optical devices.

View Article and Find Full Text PDF

Semiconducting single-walled carbon nanotubes (SWCNTs) are significantly attractive for thermoelectric generators (TEGs), which convert thermal energy into electricity via the Seebeck effect. This is because the characteristics of semiconducting SWCNTs are perfectly suited for TEGs as self-contained power sources for sensors on the Internet of Things (IoT). However, the thermoelectric performances of the SWCNTs should be further improved by using the power sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!