SERSomes for metabolic phenotyping and prostate cancer diagnosis.

Cell Rep Med

State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, P.R. China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China. Electronic address:

Published: June 2024

Molecular phenotypic variations in metabolites offer the promise of rapid profiling of physiological and pathological states for diagnosis, monitoring, and prognosis. Since present methods are expensive, time-consuming, and still not sensitive enough, there is an urgent need for approaches that can interrogate complex biological fluids at a system-wide level. Here, we introduce hyperspectral surface-enhanced Raman spectroscopy (SERS) to profile microliters of biofluidic metabolite extraction in 15 min with a spectral set, SERSome, that can be used to describe the structures and functions of various molecules produced in the biofluid at a specific time via SERS characteristics. The metabolite differences of various biofluids, including cell culture medium and human serum, are successfully profiled, showing a diagnosis accuracy of 80.8% on the internal test set and 73% on the external validation set for prostate cancer, discovering potential biomarkers, and predicting the tissue-level pathological aggressiveness. SERSomes offer a promising methodology for metabolic phenotyping.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228451PMC
http://dx.doi.org/10.1016/j.xcrm.2024.101579DOI Listing

Publication Analysis

Top Keywords

metabolic phenotyping
8
prostate cancer
8
sersomes metabolic
4
phenotyping prostate
4
cancer diagnosis
4
diagnosis molecular
4
molecular phenotypic
4
phenotypic variations
4
variations metabolites
4
metabolites offer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!