Microtubule end-on attachment maturation regulates Mps1 association with its kinetochore receptor.

Curr Biol

Department of Molecular Genetics, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany. Electronic address:

Published: June 2024

Faithful chromosome segregation requires that sister chromatids establish bi-oriented kinetochore-microtubule attachments. The spindle assembly checkpoint (SAC) prevents premature anaphase onset with incomplete attachments. However, how microtubule attachment and checkpoint signaling are coordinated remains unclear. The conserved kinase Mps1 initiates SAC signaling by localizing transiently to kinetochores in prometaphase and is released upon bi-orientation. Using biochemistry, structure predictions, and cellular assays, we shed light on this dynamic behavior in Saccharomyces cerevisiae. A conserved N-terminal segment of Mps1 binds the neck region of Ndc80:Nuf2, the main microtubule receptor of kinetochores. Mutational disruption of this interface, located at the backside of the paired CH domains and opposite the microtubule-binding site, prevents Mps1 localization, eliminates SAC signaling, and impairs growth. The same interface of Ndc80:Nuf2 binds the microtubule-associated Dam1 complex. We demonstrate that the error correction kinase Ipl1/Aurora B controls the competition between Dam1 and Mps1 for the same binding site. Thus, binding of the Dam1 complex to Ndc80:Nuf2 may release Mps1 from the kinetochore to promote anaphase onset.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2024.03.062DOI Listing

Publication Analysis

Top Keywords

anaphase onset
8
sac signaling
8
dam1 complex
8
mps1
6
microtubule end-on
4
end-on attachment
4
attachment maturation
4
maturation regulates
4
regulates mps1
4
mps1 association
4

Similar Publications

Targeting Mitotic Exit in Malignant Cells.

Methods Mol Biol

November 2024

Faculty of Medicine, Department of Medicine I, Medical Center, University of Freiburg, Freiburg, Germany.

In order to sustain genomic stability by correct DNA replication and mitosis and thus avoid malignant transformation of cells, the cell cycle is a strictly regulated process. Aberrant cell cycle regulation and defects in mitosis in malignant cells are targets of various cancer therapies. Cancer cells may survive antimitotic treatment due to mitotic slippage with a residual activity of the ubiquitin ligase anaphase-promoting complex (APC/C) and a continuous slow ubiquitin-proteasome-dependent cyclin B-degradation leading to mitotic exit.

View Article and Find Full Text PDF

Determination of Anaphase Duration by Time-Lapse Microscopy in Budding Yeast.

Methods Mol Biol

November 2024

Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey.

Article Synopsis
  • Time-lapse microscopy is an essential method for studying cell cycle dynamics, particularly to observe the duration of anaphase in budding yeast cells.
  • The chapter provides a detailed guide on using this technique, covering everything from preparing samples and setting up the microscope to analyzing the data.
  • By focusing on the mitotic spindle, the methodology helps researchers understand the kinetics of mitotic exit in cell division.
View Article and Find Full Text PDF

Securin regulates the spatiotemporal dynamics of separase.

J Cell Biol

February 2025

Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA.

Separase regulates multiple aspects of the metaphase-to-anaphase transition. Separase cleaves cohesin to allow chromosome segregation and localizes to vesicles to promote exocytosis. The anaphase-promoting complex/cyclosome (APC/C) activates separase by ubiquitinating its inhibitory chaperone, securin, triggering its degradation.

View Article and Find Full Text PDF

Cells coordinate diverse events at anaphase onset, including separase activation, cohesin cleavage, chromosome separation, and spindle reorganization. Regulation of the XMAP215 family member and microtubule polymerase, Stu2, at the metaphase-anaphase transition determines a specific redistribution from kinetochores to spindle microtubules. We show that cells modulate Stu2 kinetochore-microtubule localization by Polo-like kinase1/Cdc5-mediated phosphorylation of T866, near the Stu2 C-terminus, thereby promoting dissociation from the kinetochore Ndc80 complex.

View Article and Find Full Text PDF

Acentric chromosome congression and alignment on the metaphase plate via kinetochore-independent forces in Drosophila.

Genetics

November 2024

Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, 1156 High Street Santa Cruz, CA, 95064, USA.

Chromosome congression and alignment on the metaphase plate involves lateral and microtubule plus-end interactions with the kinetochore. Here we take advantage of our ability to efficiently generate a GFP-marked acentric X chromosome fragment in Drosophila neuroblasts to identify forces acting on chromosome arms that drive congression and alignment. We find acentrics efficiently congress and align on the metaphase plate, often more rapidly than kinetochore-bearing chromosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!