Perfluoroalkyl substances (PFASs) are ubiquitous in the environment and even accumulate in the human body associated with their excellent stability and persistence. However, the effect and reaction mechanism at the molecular level on the cell phospholipid peroxidation remained unclear. In this work, the interfacial reaction of model phospholipids (POPG) intervened by per- and polyfluoroalkyl substances (PFASs) at the air-water interface of a hanged droplet exposed to ozone (O) was investigated. Perfluorinated carboxylates and sulfonates were evaluated. Four-carbon PFASs promoted interfacial ozonolysis, but PFASs with longer carbon skeletons impeded this chemistry. A model concerning POPG packing was proposed and it was concluded that the interfacial chemistry was mediated by chain length rather than their functional groups. Four-carbon PFASs could couple into POPG ozonolysis by mainly reacting with aldehyde products along with minor Criegee intermediates, but this was not observed for longer PFASs. This is different from that condensed-phase Criegee intermediates preferred to reacting with per-fluoroalkyl carboxylic acids. These results provide insight into the adverse health of PFASs on cell peroxidation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2024.126278 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!