Proteomic Barcoding Platform for Macromolecular Screening and Delivery.

J Proteome Res

Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.

Published: June 2024

Engineered macromolecules offer compelling means for the therapy of conventionally undruggable interactions in human disease. However, their efficacy is limited by barriers to tissue and intracellular delivery. Inspired by recent advances in molecular barcoding and evolution, we developed BarcodeBabel, a generalized method for the design of libraries of peptide barcodes suitable for high-throughput mass spectrometry proteomics. Combined with PeptideBabel, a Monte Carlo sampling algorithm for the design of peptides with evolvable physicochemical properties and sequence complexity, we developed a barcoded library of cell penetrating peptides (CPPs) with distinct physicochemical features. Using quantitative targeted mass spectrometry, we identified CPPS with improved nuclear and cytoplasmic delivery exceeding hundreds of millions of molecules per human cell while maintaining minimal membrane disruption and negligible toxicity in vitro. These studies provide a proof of concept for peptide barcoding as a homogeneous high-throughput method for macromolecular screening and delivery. BarcodeBabel and PeptideBabel are available open-source from https://github.com/kentsisresearchgroup/.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jproteome.4c00068DOI Listing

Publication Analysis

Top Keywords

macromolecular screening
8
screening delivery
8
mass spectrometry
8
proteomic barcoding
4
barcoding platform
4
platform macromolecular
4
delivery
4
delivery engineered
4
engineered macromolecules
4
macromolecules offer
4

Similar Publications

Coaxial bioprinting of a three-layer vascular structure exhibiting blood-brain barrier function for neuroprotective drug screening.

Colloids Surf B Biointerfaces

January 2025

Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China.

The in vitro blood-brain barrier (BBB) structures can offer advantages for studying cerebrovascular functions and developing neuroprotective drugs. However, currently developed BBB models are overly simplistic and inadequate for replicating the complex three-dimensional architecture of the in vivo BBB. In this study, a method is introduced for fabricating a three-layer vascular structure exhibiting BBB function using a coaxial extrusion bioprinting technique with a two-layer nozzle.

View Article and Find Full Text PDF

Myelin abnormalities in white matter have been implicated in the pathophysiology of psychotic spectrum disorders (PSD), which are characterized by brain dysconnectivity as a core feature. Among evidence from in vivo MRI studies, diffusion imaging findings have largely supported disrupted white matter integrity in PSD; however, they are not specific to myelin changes. Using a multimodal imaging approach, the current study aimed to further delineate myelin and microstructural changes in the white matter of a young PSD cohort.

View Article and Find Full Text PDF

A β-cyclodextrin-based supramolecular photonic crystal hydrogel biosensor with macroporous structures for naked-eye visual detection of cholesterol.

Carbohydr Polym

March 2025

College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China. Electronic address:

Cholesterol (CHO) is an essential lipid in cell membranes and a precursor for vital living substances. Abnormal CHO levels can cause cardiovascular diseases. Therefore, simple and accurate monitoring of CHO levels is crucial for early diagnosis and effective management of cardiovascular diseases.

View Article and Find Full Text PDF

Bioengineering chitosan-antibody/fluorescent quantum dot nanoconjugates for targeted immunotheranostics of non-hodgkin B-cell lymphomas.

Int J Biol Macromol

January 2025

Center of Nanoscience, Nanotechnology, and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil. Electronic address:

B-cell non-Hodgkin lymphoma (NHL) is the most common hematologic malignancy, capable of invading the brain, meninges, and nerve roots of the brain and spine, leading to high lethality. Herein, we designed and developed novel nanostructures for the first time by biofunctionalizing chitosan with two specific antibodies (i.e.

View Article and Find Full Text PDF

Pyruvate Kinase-Based Novel 2-Thiazol-2-yl-1,3,4-oxadiazoles Discovery as Fungicidal Highly Active Leads.

J Agric Food Chem

January 2025

State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China.

To discover novel inhibitors of pyruvate kinase (PK) as fungicidal candidates, a series of 2-thiazol-2-yl-1,3,4-oxadiazole derivatives were designed by a prediction model with PK (RsPK) as a protein target and as a ligand. Fungicidal screening indicated that , , , , , , , and exhibited equal or higher activity compared to against , , or . To our surprise, showed comparable activity to flutriafol with an EC of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!