Context: Thiazide-induced hyponatremia is one of the most common forms of hyponatremia, but its pathogenesis is incompletely understood. Recent clinical data suggest links with prostaglandin E2 (PGE2) and a single nucleotide polymorphism (SNP) in the prostaglandin transporter gene (SLCO2A1), but it is unknown if these findings also apply to the general population.
Objective: To study the associations between serum sodium, thiazide diuretics, urinary excretions of PGE2, and its metabolite (PGEM), and the rs34550074 SNP in SLCO2A1 in the general population.
Design: Prospective population-based cohort study (Rotterdam Study).
Setting: General population.
Participants: 2178 participants (65% female, age 64 ± 8 years).
Intervention(s): None.
Main Outcome Measure(s): Serum sodium levels.
Results: Higher urinary PGE2 excretion was associated with lower serum sodium: difference in serum sodium for each 2-fold higher PGE2 -0.19 mmol/L [95% confidence interval (CI) -0.31 to -0.06], PGEM -0.29 mmol/L (95% CI -0.41 to -0.17). This association was stronger in thiazide users (per 2-fold higher PGE2 -0.73 vs -0.12 mmol/L and PGEM -0.6 vs -0.25 mmol/L, P for interaction <.05 for both). A propensity score matching analysis of thiazide vs non-thiazide users yielded similar results. The SNP rs34550074 was not associated with lower serum sodium or higher urinary PGE2 or PGEM excretion in thiazide or non-thiazide users.
Conclusion: Serum sodium is lower in people with higher urinary PGE2 and PGEM excretion, and this association is stronger in thiazide users. This suggests that PGE2-mediated water reabsorption regulates serum sodium, which is relevant for the pathogenesis of hyponatremia in general and thiazide-induced hyponatremia specifically.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11403316 | PMC |
http://dx.doi.org/10.1210/clinem/dgae352 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!