Circular RNAs (circRNAs) play critical roles in the recurrence and progression of non-small-cell lung cancer (NSCLC). This study aimed to investigate the function and underlying mechanism of a novel circRNA (circRPPH1) in NSCLC. Localization of circRPPH1 was determined via FISH assay, while cell proliferation was assessed via CCK8 and colony formation assay. Cell migration and invasion were studied using transwell assay, while binding sites between miR-326 and circRPPH1 or ERBB4 were verified by luciferase reporter, RIP, and RNA pull-down assays. Moreover, xenograft assay was performed to verify the in vivo roles of circRPPH1. Results indicated that circRPPH1 was highly expressed in NSCLC tissues and cells, where circRPPH1 levels were predictive of poor prognosis. The malignant behavior of NSCLC cells was exacerbated by overexpressing circRPPH1, while opposite effects were observed when it was knocked down. Direct interaction between miR-326 and circRPPH1 or ERBB4 was confirmed in NSCLC cells, while rescue experiment results showed that circRPPH1 exerted an oncogenic role via miR-326-ERBB4 signal axis. Moreover, in vitro, growth of NSCLC cells was significantly attenuated following circRPPH1 depletion. The study concluded that circRPPH1 was involved in promoting NSCLC progression via the miR-326/ERBB4 axis, which provided a novel potential target for the diagnosis or treatment of NSCLC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10528-024-10824-3 | DOI Listing |
Cancer Lett
January 2025
Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China; Institute of Clinical Pharmacology, Central South University, Changsha 410078, P. R. China. Electronic address:
Lung cancer, particularly non-small cell lung cancer (NSCLC), remains a leading cause of cancer-related mortality. Resistance to platinum-based chemotherapy, such as cisplatin, significantly limits treatment efficacy. Circular RNAs (circRNAs) have emerged as key regulators of cancer progression and chemotherapy resistance due to their stable structure, which protects them from degradation.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Pu-Er Tea Science, Ministry of Education, Yunnan Agricultural University, Heilongtan, North of Kunming, Kunming 650201, China.
Lung cancer is the leading cause of cancer-related death. Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancers and over 60% express wild-type EGFR (WT-EGFR); however, EGFR tyrosine kinase inhibitors (TKIs) have limited effect in most patients with WT-EGFR tumors. In this study, we applied network pharmacology screening and MTT screening of bioactive compounds to obtain one novel grifolic acid that may inhibit NSCLC through the EGFR-ERK1/2 pathway.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, and the Institute for Human Genetics, University of California, San Francisco, CA 94121, USA.
TSPX is an X-linked tumor suppressor that was initially identified in non-small cell lung cancer (NSCLC) cell lines. However, its expression patterns and downstream mechanisms in NSCLC remain unclear. This study aims to investigate the functions of TSPX in NSCLC by identifying its potential downstream targets and their correlation with clinical outcomes.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths globally, with a persistently low five-year survival rate of only 14-17%. High rates of metastasis contribute significantly to the poor prognosis of NSCLC, in which inflammation plays an important role by enhancing tumor growth, angiogenesis, and metastasis. Targeting inflammatory pathways within cancer cells may thus represent a promising strategy for inhibiting NSCLC metastasis.
View Article and Find Full Text PDFBiomolecules
December 2024
Cancer Metastasis Branch, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea.
Metastatic cancer accounts for most cancer-related deaths, and identifying specific molecular targets that contribute to metastatic progression is crucial for the development of effective treatments. Hypoxia, a feature of solid tumors, plays a role in cancer progression by inducing resistance to therapy and accelerating metastasis. Here, we report that CCAAT/enhancer-binding protein beta (C/EBPβ) transcriptionally regulates () and thus promotes migration and invasion of non-small-cell lung cancer (NSCLC) cells under hypoxic conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!