Proteins delivered by endocytosis or autophagy to lysosomes are degraded by exo- and endoproteases. In humans 15 lysosomal cathepsins (CTS) act as important physiological regulators. The cysteine proteases CTSB and CTSL and the aspartic protease CTSD are the most abundant and functional important lysosomal proteinases. Whereas their general functions in proteolysis in the lysosome, their individual substrate, cleavage specificity, and their possible sequential action on substrate proteins have been previously studied, their functional redundancy is still poorly understood. To address a possible common role of highly expressed and functional important CTS proteases, we generated CTSB-, CTSD-, CTSL-, and CTSBDL-triple deficient (KO) human neuroblastoma-derived SH-SY5Y cells and CTSB-, CTSD-, CTSL-, CTSZ and CTSBDLZ-quadruple deficient (KO) HeLa cells. These cells with a combined cathepsin deficiency exhibited enlarged lysosomes and accumulated lipofuscin-like storage material. The lack of the three (SH-SY5Y) or four (HeLa) major CTSs caused an impaired autophagic flux and reduced degradation of endocytosed albumin. Proteome analyses of parental and CTS-depleted cells revealed an enrichment of cleaved peptides, lysosome/autophagy-associated proteins, and potentially endocytosed membrane proteins like the amyloid precursor protein (APP), which can be subject to endocytic degradation. Amino- and carboxyterminal APP fragments accumulated in the multiple CTS-deficient cells, suggesting that multiple CTS-mediated cleavage events regularly process APP. In summary, our analyses support the idea that different lysosomal cathepsins act in concert, have at least partially and functionally redundant substrates, regulate protein degradation in autophagy, and control cellular proteostasis, as exemplified by their involvement in the degradation of APP fragments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111660 | PMC |
http://dx.doi.org/10.1007/s00018-024-05274-4 | DOI Listing |
Insects
November 2024
School of Agriculture, Ningxia University, Yinchuan 750021, China.
In this study, we selected , one of the primary insect pests of alfalfa, as the experimental insect and infected it with . Transcriptomic and metabolomic analyses were conducted to explore alterations in gene expression and metabolic processes in at 48, 96, and 144 h post infection with . The transcriptomic analysis unveiled that infection boosted immune responses in tubercula, affecting carbohydrate metabolism, cytochrome P450 activity, lysosome function, apoptosis regulation, phagosome formation, glutathione metabolism, amino acid metabolism, and pathogen response pathways.
View Article and Find Full Text PDFBiomedicines
December 2024
Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
Background: Sepsis is a leading cause of mortality in intensive care units (ICUs). Cell-free hemoglobin (CFH) released during sepsis interacts with lysosomal enzymes from neutrophils and macrophages. This study aims to examine the association of LVV-hemorphin-7 (LVV-H7), cathepsin D, and cathepsin G with sepsis and shock in ICU patients.
View Article and Find Full Text PDFBiology (Basel)
November 2024
Department of Biology and Biotechnology, Faculty of Science, Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan.
The role of the yolk sac membrane (YSM) and digestive tract in the processing of egg yolk proteins during embryogenesis is unexplored in the duck . Here, we investigated in the duck embryo the function of the YSM, proventriculus, and small intestine in protein digestion and uptake. We tested the expression of aminopeptidase N () and the oligopeptide transporter as well as the expression of cathepsin B () and cathepsin D () lysosomal genes in the YSM during incubation days 12, 14, 16-18, 20, 22, 24, 26, and 28 (the day of hatch).
View Article and Find Full Text PDFUnlabelled: The neurodegenerative disorder Frontotemporal Dementia (FTD) can be caused by a repeat expansion (GGGGCC; G4C2) in C9orf72. The function of wild-type C9orf72 and the mechanism by which the C9orf72-G4C2 mutation causes FTD, however, remain unresolved. Diverse disease models including human brain samples and differentiated neurons from patient-derived induced pluripotent stem cells (iPSCs) identified some hallmarks associated with FTD, but these models have limitations, including biopsies capturing only a static snapshot of dynamic processes and differentiated neurons being labor-intensive, costly, and post-mitotic.
View Article and Find Full Text PDFImmunopharmacol Immunotoxicol
January 2025
Tobacco and Health Research Center, Endocrinology and Metabolism Research Center, Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
Traumatic brain injury (TBI) precipitates a neuroinflammatory cascade, with the NLRP3 inflammasome emerging as a critical mediator. This review scrutinizes the complex activation pathways of the NLRP3 inflammasome by underscoring the intricate interplay between calcium signaling, mitochondrial disturbances, redox imbalances, lysosomal integrity, and autophagy. It is hypothesized that a combination therapy approach-integrating NF-κB pathway inhibitors with NLRP3 inflammasome antagonists-holds the potential to synergistically dampen the inflammatory storm associated with TBI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!