New approaches such as selective area growth (SAG), where crystal growth is lithographically controlled, allow the integration of bottom-up grown semiconductor nanomaterials in large-scale classical and quantum nanoelectronics. This calls for assessment and optimization of the reproducibility between individual components. We quantify the structural and electronic statistical reproducibility within large arrays of nominally identical selective area growth InAs nanowires. The distribution of structural parameters is acquired through comprehensive atomic force microscopy studies and transmission electron microscopy. These are compared to the statistical distributions of the cryogenic electrical properties of 256 individual SAG nanowire field effect transistors addressed using cryogenic multiplexer circuits. Correlating measurements between successive thermal cycles allows distinguishing between the contributions of surface impurity scattering and fixed structural properties to device reproducibility. The results confirm the potential of SAG nanomaterials, and the methodologies for quantifying statistical metrics are essential for further optimization of reproducibility.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c01038DOI Listing

Publication Analysis

Top Keywords

selective area
12
statistical reproducibility
8
area growth
8
optimization reproducibility
8
statistical
4
reproducibility selective
4
area grown
4
grown inas
4
inas nanowire
4
nanowire devices
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!