Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: As a significant bridge between perforasomes, choke vessels are the key structure of blood supply expansion, also a prerequisite for preventing distal ischemic necrosis of the multiterritory perforator flap, where the remodeling of choke vessels after flap elevation plays an essential role. This systematic review highlights the underlying mechanisms and clinical ways to promote remodeling of choke vessels, as well as experimental observation approaches to further guide researchers.
Methods: A systematic review was conducted from 1975 to 2023 through PubMed, EMBASE, Web of Science, and Cochrane database with the key words "choke vessels" and "perforator flap" to investigate the mechanisms and ways to promote remodeling of choke vessels as well as observation approaches. The inclusion criteria and exclusion criteria were set to screen the literature.
Results: A total of 94 literatures were obtained through database retrieval. After removing the duplicate literature, reading the title and abstract, and reviewing the full text finally, 33 articles were included in the final study.
Conclusions: The underlying remodeling of choke vessels may be related to fluid shear stress, hypoxia, and inflammation. The clinical ways to promote remodeling of choke vessels include surgical delay, arterial supercharge, venous superdrainage, drugs, and stem cells. Various experimental methods of observing microvascular morphology allow for a comprehensive research of choke vessels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/SAP.0000000000003980 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!