Clostridioides (formerly Clostridium) difficile is a leading cause of infectious diarrhea associated with antibiotic therapy. The ability of this anaerobic pathogen to acquire enough iron to proliferate under iron limitation conditions imposed by the host largely determines its pathogenicity. However, since high intracellular iron catalyzes formation of deleterious reactive hydroxyl radicals, iron uptake is tightly regulated at the transcriptional level by the ferric uptake regulator Fur. Several studies relate lacking a functional fur gene in C. difficile cells to higher oxidative stress sensitivity, colonization defect and less toxigenicity, although Fur does not appear to directly regulate either oxidative stress response genes or pathogenesis genes. In this work, we report the functional characterization of C. difficile Fur and describe an additional oxidation sensing Fur-mediated mechanism independent of iron, which affects Fur DNA-binding. Using electrophoretic mobility shift assays, we show that Fur binding to the promoters of fur, feoA and fldX genes, identified as iron and Fur-regulated genes in vivo, is specific and does not require co-regulator metal under reducing conditions. Fur treatment with HO produces dose-dependent soluble high molecular weight species unable to bind to target promoters. Moreover, Fur oligomers are dithiotreitol sensitive, highlighting the importance of some interchain disulfide bond(s) for Fur oligomerization, and hence for activity. Additionally, the physiological electron transport chain NADPH-thioredoxin reductase/thioredoxin from Escherichia coli reduces inactive oligomerized C. difficile Fur that recovers activity. In conjunction with available transcriptomic data, these results suggest a previously underappreciated complexity in the control of some members of the Fur regulon that is based on Fur redox properties and might be fundamental for the adaptive response of C. difficile during infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/febs.17156 | DOI Listing |
Sci Rep
December 2024
Department of Biology, University of Oxford, Mansfield Road, Oxford, OX1 3SZ, UK.
Long-distance migrants must optimise their timing of breeding to capitalise on resources at both breeding and over-wintering sites. In species with protracted breeding seasons, departing earlier on migration might be advantageous, but is constrained by the ongoing breeding attempt. Here we investigated how breeding timing affects migratory strategies in the Manx shearwater (Puffinus puffinus), a trans-hemispheric migratory seabird with large temporal variation in the onset of breeding.
View Article and Find Full Text PDFSci Rep
December 2024
British Antarctic Survey, High Cross, Madingley Road, Cambridge, UK.
Marine microplastic is pervasive, polluting the remotest ecosystems including the Southern Ocean. Since this region is already undergoing climatic changes, the additional stress of microplastic pollution on the ecosystem should not be considered in isolation. We identify potential hotspot areas of ecological impact from a spatial overlap analysis of multiple data sets to understand where marine biota are likely to interact with local microplastic emissions (from ship traffic and human populations associated with scientific research and tourism).
View Article and Find Full Text PDFNat Commun
December 2024
Division of Plastic Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
Secondary lymphedema is a common sequel of oncologic surgery and presents a global health burden still lacking pharmacological treatment. The infiltration of the lymphedematous extremities with CD4T cells influences lymphedema onset and emerges as a promising therapy target. Here, we show that the modulation of CD4FOXP3CD25regulatory T (T) cells upon anti-CTLA4 treatment protects against lymphedema development in patients with melanoma and in a mouse lymphedema model.
View Article and Find Full Text PDFSignal Transduct Target Ther
December 2024
Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, 68167, Mannheim, Germany.
Head Neck
December 2024
Department of Pediatric Hematology & Oncology, Klinik für Kinder- Und Jugendmedizin, Universitätsmedizin Rostock, Rostock, Germany.
Background: Infantile fibrosarcoma (IFS) is a rare pediatric tumor of intermediate malignancy with high local aggressiveness that typically presents in young infants. Its occurrence in the head and neck region is rare. Complete non-mutilating surgical resection is often not possible, requiring multimodal treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!