Porous polymeric nanoreactors capable of multitasking are attractive and require a judicious design strategy. Herein, we describe an unusual approach for the synthesis of a porous polymer SBF-BINOL-6 by formation of the BINOL entity taking substituted naphthols and spirobifluorene as co-monomers with high yield (81%). The as-synthesized polymer exhibited nanotube and nanosphere-like morphology, thermal endurance up to 372 °C and a BET surface area as high as 590 m g. The polymer endowed efficient loading of silver nanoparticles to generate Ag@SBF6, as confirmed from X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. Ag@SBF6 was effectively used as a heterogeneous catalyst towards the [3 + 2] dipolar cycloaddition reaction for the synthesis of biologically important 5-substituted 1-tetrazoles with yields in the range of 75-99% and recyclability for at least seven times without a significant decline in its catalytic efficiency. Additionally, a superior host-guest interaction by the polymer offered iodine adsorption in the vapour phase with a high uptake capacity of up to 4.0 g g. Interestingly, the iodine-loaded polymer, I2@SBF6, demonstrated iodine-promoted increased conductivity (1.3 × 10 S cm) through facile charge transfer interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr00599f | DOI Listing |
J Am Chem Soc
December 2024
School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
Potassium-iodine batteries show great promise as alternatives for next-generation battery technology, owing to their high power density and environmental sustainability. Nevertheless, they suffer from polyiodide dissolution and the multistep electrode fabrication process, which leads to severe performance degradation and limitations in mass-market adoption. Herein, we report a simple "solution-adsorption" strategy for scale-up production of TiC(OH)-wrapped carbon nanotube paper (CNP), as an economic host for strengthening the iodine encapsulation.
View Article and Find Full Text PDFChemistry
December 2024
Indian Institute of Technology Guwahati, Dept. of Chemistrty, North Guwahati, 781039, Guwahati, INDIA.
Bromine is a significant environmental threat due to its corrosive nature and contribution to ozone layer depletion. It often coexists with iodine and forms interhalogen complexes (IBr), which require an effective and selective bromine adsorption strategy. Leveraging the electrophilic nature of bromine, we designed an electron-rich thiophene-based porous organic polymer (POF-2).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Lanzhou University, College of chemistry and chemical engineering, Lanzhou, CHINA.
Imperfections in metal halide perovskites, such as those induced by light exposure or thermal stress, compromise device performance and stability. A key challenge is immobilizing volatile iodine produced by iodide oxidation and regenerating impurities like elemental lead and iodine. Here, we address this by integrating a redox-active supramolecular assembly of nickel octaethylporphyrin into perovskite film, functioning as both an immobilizer and redox shuttle.
View Article and Find Full Text PDFChem Asian J
December 2024
shandong university, chemistry, Shanda nanlu No.27, JInan, Shandong, jinan, CHINA.
The rapid advancement of industrial production has led to an increase in water pollutants, posing a significant threat to public health. With the deepening of research on pollutant adsorbents. The application of silsesquioxane-based cross-linked polymer networks in water pollution treatment has gradually attracted people's attention.
View Article and Find Full Text PDFInorg Chem
December 2024
Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
Cage-based MOFs, with their customizable chemical environments and precisely controllable nanospaces, show great potential for the selective adsorption of guest molecules with specific structures. In this work, we have constructed a novel cage-based MOF [(CH)NH][(UO)(TMTTA)]·11.5DMF·2HO (IHEP-51), utilizing a triazine derivative poly(carboxylic acid), 4,4',4″-(((1,3,5-triazine-2,4,6-triyl)tris(((4-carboxycyclohexyl)methyl)azanediyl))tris(methylene))tribenzoic acid (HTMTTA), as an organic ligand and uranyl as a metal node.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!