The auricular cartilage, which is typically soft and flexible, can calcify or ossify because of diseases such as diabetes mellitus, trauma, radiation therapy for cancer, and more commonly from frostbite. Calcified, ossified, or hardened auricular cartilage is a rare finding in the clinical literature and appears to be absent in the physical and forensic anthropological literature. This study examines the ossified auricular cartilage and tests whether the hypothesis can be identified in postmortem skeletonized tissue and be part of the external auditory meatus. A total of 290 crania were examined for accessory ossicles. A descriptive and interpretative analysis was performed grossly, histologically, and morphometrically to document the morphology and location of the ossicles, investigate their structure, and perform hypothesis testing. Results revealed that seven females and one male crania from a total of 290 crania (2.76%) exhibit semi-ossified auricular cartilage attached to the tympanic plate of the temporal bone. The morphology and location of the ossicles at the junction of the auricle and external auditory meatus indicate they are hardened auricular cartilage that was verified with histological observations. Regression analysis indicates that addition of the ossicle to the depth of the auditory tube significantly changes coefficient of determination () with respect to cranial breadth. In conclusion, results indicate that small cartilaginous structures of the external ear may ossify forming accessory tympanic plate ossicles that potentially could be identified in skeletal remains as a new osteological entity. This report highlights the types of information that can be gained using an approach that integrates forensic anthropology, gross anatomy, and histology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106218 | PMC |
http://dx.doi.org/10.1093/fsr/owae003 | DOI Listing |
Sci Rep
December 2024
Pharmacology Research Group, Universidad del Valle, Colombia, Cali, 760043.
Vascularized composite allotransplantation (VCA) represents a clinical challenge for transplant therapy, as it involves different tissues with unique immunogenicity. Even when receiving immunosuppressive therapy, they are more vulnerable to severe hypoxia, microvascular damage, and ultimately the rejection or chronic graft dysfunction after transplantation. This study aimed to develop a surgical protocol for VCA of the ear in a porcine biomodel in the absence of immunosuppression, maintaining the in vitro co-culture of the allograft and assessing their relationship with allograft survival.
View Article and Find Full Text PDFJ Craniofac Surg
December 2024
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China.
Objective: Bilateral cleft lip nose deformity often involves nasal alar retraction. The use of autogenous auricular cartilage for correction further aggravated nasal alar retraction caused by nasal lining defects after the operation. A novel graft was developed to address bilateral cleft lip nose deformity.
View Article and Find Full Text PDFJ Craniofac Surg
October 2024
Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan, Beijing, China.
Objective: For full expansion of ear reconstruction, the stability of a cartilage framework is very important. However, most techniques for framework fabrication focus on three-dimensional structure and adequate projection. Few studies are available on improving the stability of the reconstructed framework.
View Article and Find Full Text PDFTissue Eng Part B Rev
December 2024
Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico.
Conditions such as congenital abnormalities, cancer, infections, and trauma can severely impact the integrity of the auricular cartilage, resulting in the need for a replacement structure. Current implants, carved from the patient's rib, involve multiple surgeries and carry risks of adverse events such as contamination, rejection, and reabsorption. Tissue engineering aims to develop lifelong auricular bioimplants using different methods, different cell types, growth factors and maintenance media formulations, and scaffolding materials compatible with the host.
View Article and Find Full Text PDFFacial Plast Surg
December 2024
Private Practice, Department of Otorhinolaryngology, Head and Neck Surgery, Mallorca, Spain.
Prominent ear deformities often result from a combination of hypertrophic conchal cartilage and an underdeveloped antihelical fold. Traditional otoplasty techniques, such as antihelical folding sutures and conchal setback maneuvers, may introduce tension and risk of relapse, leading to suboptimal aesthetic outcomes. The PILLARS CONCEPT: represents an alternative surgical approach specifically designed to address hypertrophic concha, ensuring stable and natural results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!