Recent exploration in insect-inspired robotics has generated considerable interest. Among insects navigating at low Reynolds numbers, mosquitoes exhibit distinct flight characteristics, including higher wingbeat frequencies, reduced stroke amplitudes, and slender wings. This leads to unique aerodynamic traits such as trailing edge vortices wake capture, diminished reliance on leading vortices, and rotational drag. This paper shows the energetic analysis of a mosquito-inspired flapping-wing Pico aerial vehicle during hovering, contributing insights to its future design and fabrication. The investigation relies on kinematic and quasi-steady aerodynamic modeling of a symmetric flapping-wing model with a wingspan of approximately 26 mm, considering translational, rotational, and wake capture force components. The control strategy adapts existing bird flapping wing approaches to accommodate insect wing kinematics and aerodynamic features. Flight controller design is grounded in understanding the impact of kinematics on wing forces. Additionally, a thorough analysis of the dynamic stability of the mosquito-inspired PAV model is conducted, revealing favorable controller response and maneuverability at a small scale. The modified model, incorporating rigid body dynamics and non-averaged aerodynamics, exhibits weak stability without a controller or sufficient power density. However, the controller effectively stabilizes the PAV model, addressing attitude and maneuverability. These preliminary findings offer valuable insights for the mechanical design, aerodynamics, and fabrication of RoboMos, an insect-inspired flapping wing pico aerial vehicle developed at UPM Malaysia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11107296 | PMC |
http://dx.doi.org/10.3389/frobt.2024.1362206 | DOI Listing |
Bioinspir Biomim
January 2025
University of the Chinese Academy of Sciences, Shenyang, Beijing, Beijing, 100049, CHINA.
Flying insects have developed two distinct adaptive strategies to minimize wing damage during collisions. One strategy includes an elastic joint at the leading edge, which is evident in wasps and beetles, while another strategy features an adaptive and deformable leading edge, as seen in bumblebees and honeybees. Inspired by the latter, a novel approach has been developed for improving collision recovery in micro aerial vehicles (MAVs) by mimicking the principle of stiffness anisotropy present in the leading edges of these insects.
View Article and Find Full Text PDFBioinspir Biomim
January 2025
School of Mechatronical Engineering, Beijing Institute of Technology, 5 South Zhonghuancun, Haidian District, Beijing 100081, Beijing, 100081, CHINA.
The wings of birds contain complex morphing mechanisms that enable them to perform remarkable aerial maneuvers. Wing morphing is often described using five wingbeat motion parameters: flapping, bending, folding, sweeping, and twisting. However, owing to a lack of real bird flight data, in-depth studies on the aerodynamic properties of these coupled motions remain scarce.
View Article and Find Full Text PDFISA Trans
January 2025
School of Artificial Intelligence, Anhui University, Hefei 230601, China. Electronic address:
This study investigates pigeon-like flexible flapping wings, which are known for their low energy consumption, high flexibility, and lightweight design. However, such flexible flapping wing systems are prone to deformation and vibration during flight, leading to performance degradation. It is thus necessary to design a control method to effectively manage the vibration of flexible wings.
View Article and Find Full Text PDFPoult Sci
December 2024
Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium; Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium. Electronic address:
Catching, carrying, and loading of broilers before transport to the slaughterhouse causes stress. In this study three catching methods (two manual (inverted, upright) and one mechanical) were compared using a cost-benefit analysis of animal welfare, ergonomics and economic analysis. Depopulation of approximately 5,000 broilers per catching method per flock (upright vs.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
In recent years, bioinspired insect flight has become a prominent research area, with a particular focus on beetle-inspired aerial vehicles. Studying the unique flight mechanisms and structural characteristics of beetles has significant implications for the optimization of biomimetic flying devices. Among beetles, (rhinoceros beetle) exhibits a distinct wing deployment-flight-retraction sequence, whereby the interaction between the hindwings and protective elytra contributes to lift generation and maintenance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!