Quasi-steady aerodynamic modeling and dynamic stability of mosquito-inspired flapping wing pico aerial vehicle.

Front Robot AI

Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.

Published: May 2024

Recent exploration in insect-inspired robotics has generated considerable interest. Among insects navigating at low Reynolds numbers, mosquitoes exhibit distinct flight characteristics, including higher wingbeat frequencies, reduced stroke amplitudes, and slender wings. This leads to unique aerodynamic traits such as trailing edge vortices wake capture, diminished reliance on leading vortices, and rotational drag. This paper shows the energetic analysis of a mosquito-inspired flapping-wing Pico aerial vehicle during hovering, contributing insights to its future design and fabrication. The investigation relies on kinematic and quasi-steady aerodynamic modeling of a symmetric flapping-wing model with a wingspan of approximately 26 mm, considering translational, rotational, and wake capture force components. The control strategy adapts existing bird flapping wing approaches to accommodate insect wing kinematics and aerodynamic features. Flight controller design is grounded in understanding the impact of kinematics on wing forces. Additionally, a thorough analysis of the dynamic stability of the mosquito-inspired PAV model is conducted, revealing favorable controller response and maneuverability at a small scale. The modified model, incorporating rigid body dynamics and non-averaged aerodynamics, exhibits weak stability without a controller or sufficient power density. However, the controller effectively stabilizes the PAV model, addressing attitude and maneuverability. These preliminary findings offer valuable insights for the mechanical design, aerodynamics, and fabrication of RoboMos, an insect-inspired flapping wing pico aerial vehicle developed at UPM Malaysia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11107296PMC
http://dx.doi.org/10.3389/frobt.2024.1362206DOI Listing

Publication Analysis

Top Keywords

flapping wing
12
pico aerial
12
aerial vehicle
12
quasi-steady aerodynamic
8
aerodynamic modeling
8
dynamic stability
8
stability mosquito-inspired
8
wing pico
8
wake capture
8
pav model
8

Similar Publications

Flying insects have developed two distinct adaptive strategies to minimize wing damage during collisions. One strategy includes an elastic joint at the leading edge, which is evident in wasps and beetles, while another strategy features an adaptive and deformable leading edge, as seen in bumblebees and honeybees. Inspired by the latter, a novel approach has been developed for improving collision recovery in micro aerial vehicles (MAVs) by mimicking the principle of stiffness anisotropy present in the leading edges of these insects.

View Article and Find Full Text PDF

Aerodynamic analysis of complex flapping motions based on free-flight biological data.

Bioinspir Biomim

January 2025

School of Mechatronical Engineering, Beijing Institute of Technology, 5 South Zhonghuancun, Haidian District, Beijing 100081, Beijing, 100081, CHINA.

The wings of birds contain complex morphing mechanisms that enable them to perform remarkable aerial maneuvers. Wing morphing is often described using five wingbeat motion parameters: flapping, bending, folding, sweeping, and twisting. However, owing to a lack of real bird flight data, in-depth studies on the aerodynamic properties of these coupled motions remain scarce.

View Article and Find Full Text PDF

Visualized neural network-based vibration control for pigeon-like flexible flapping wings.

ISA Trans

January 2025

School of Artificial Intelligence, Anhui University, Hefei 230601, China. Electronic address:

This study investigates pigeon-like flexible flapping wings, which are known for their low energy consumption, high flexibility, and lightweight design. However, such flexible flapping wing systems are prone to deformation and vibration during flight, leading to performance degradation. It is thus necessary to design a control method to effectively manage the vibration of flexible wings.

View Article and Find Full Text PDF

Comparing methods for catching and crating broiler chicken flocks: A trade-off between animal welfare, ergonomics and economics.

Poult Sci

December 2024

Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium; Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium. Electronic address:

Catching, carrying, and loading of broilers before transport to the slaughterhouse causes stress. In this study three catching methods (two manual (inverted, upright) and one mechanical) were compared using a cost-benefit analysis of animal welfare, ergonomics and economic analysis. Depopulation of approximately 5,000 broilers per catching method per flock (upright vs.

View Article and Find Full Text PDF

Kinematics and Flow Field Analysis of Flight.

Biomimetics (Basel)

December 2024

Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

In recent years, bioinspired insect flight has become a prominent research area, with a particular focus on beetle-inspired aerial vehicles. Studying the unique flight mechanisms and structural characteristics of beetles has significant implications for the optimization of biomimetic flying devices. Among beetles, (rhinoceros beetle) exhibits a distinct wing deployment-flight-retraction sequence, whereby the interaction between the hindwings and protective elytra contributes to lift generation and maintenance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!