The lipid droplet (LD) is a conserved organelle that exists in almost all organisms, ranging from bacteria to mammals. Dysfunctions in LDs are linked to a range of human metabolic syndromes. The formation of protein complexes on LDs is crucial for maintaining their function. Investigating how proteins interact on LDs is essential for understanding the role of LDs. We have developed an effective method to uncover protein-protein interactions and protein complexes specifically on LDs. In this method, we conduct co-immunoprecipitation (co-IP) experiments using LD proteins extracted directly from isolated LDs, rather than utilizing proteins from cell lysates. To elaborate, we begin by purifying LDs with high-quality and extracting LD-associated proteins. Subsequently, the co-IP experiment is performed on these LD-associated proteins directly, which would enhance the co-IP experiment specificity of LD-associated proteins. This method enables researchers to directly unveil protein complexes on LDs and gain deeper insights into the functional roles of proteins associated with LDs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11103721 | PMC |
http://dx.doi.org/10.52601/bpr.2024.240007 | DOI Listing |
Ann Gen Psychiatry
January 2025
Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Schizophrenia is one of the most debilitating mental illnesses affecting any age group. The mechanism and etiology of schizophrenia are extremely complex and multiple signaling pathways recruit genes implicated in the etiology of this disease. While the role of Wnt/β-catenin signaling in this disorder has been verified, the impact of long noncoding RNAs (lncRNAs) associated with this pathway has not been studied in schizophrenia.
View Article and Find Full Text PDFJ Cheminform
January 2025
Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK.
Current strategies centred on either merging or linking initial hits from fragment-based drug design (FBDD) crystallographic screens generally do not fully leaverage 3D structural information. We show that an algorithmic approach (Fragmenstein) that 'stitches' the ligand atoms from this structural information together can provide more accurate and reliable predictions for protein-ligand complex conformation than general methods such as pharmacophore-constrained docking. This approach works under the assumption of conserved binding: when a larger molecule is designed containing the initial fragment hit, the common substructure between the two will adopt the same binding mode.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Most patients with prostate cancer inevitably progress to castration-resistant prostate cancer (CRPC), at which stage chemotherapeutics like docetaxel become the first-line treatment. However, chemotherapy resistance typically develops after an initial period of therapeutic efficacy. Increasing evidence indicates that cancer stem cells confer chemotherapy resistance via exosomes.
View Article and Find Full Text PDFJ Transl Med
January 2025
Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
Background: Colorectal cancer (CRC) exhibits a high incidence globally, with the liver being the most common site of distant metastasis. At the time of diagnosis, 20-30% of CRC patients already present with liver metastases. Colorectal liver metastasis (CRLM) is a major cause of mortality among CRC patients.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
Salinization poses a significant challenge in agriculture. Identifying salt-tolerant plant germplasm resources and understanding their mechanisms of salt tolerance are crucial for breeding new salt-tolerant plant varieties. However, one of the primary obstacles to achieving this goal in crops is the physiological complexity of the salt-tolerance trait.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!