Overlooked interaction between redox-mediator and bisphenol-A in permanganate oxidation.

Environ Sci Ecotechnol

Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, United States.

Published: September 2024

Research efforts on permanganate (Mn(VII)) combined with redox-mediator (RM), have received increasing attention due to their significant performance for bisphenol-A (BPA) removal. However, the mechanisms underpinning BPA degradation remain underexplored. Here we show the overlooked interactions between RM and BPA during permanganate oxidation by introducing an RM-N-hydroxyphthalimide (NHPI). We discovered that the concurrent generation of MnO and phthalimide--oxyl (PINO) radical significantly enhances BPA oxidation within the pH range of 5.0-6.0. The detection of radical cross-coupling products between PINO radicals and BPA or its derivatives corroborates the pivotal role of radical cross-coupling in BPA oxidation. Intriguingly, we observed the formation of an NHPI-BPA complex, which undergoes preferential oxidation by Mn(VII), marked by the emergence of an electron-rich domain in NHPI. These findings unveil the underlying mechanisms in the Mn(VII)/RM system and bridge the knowledge gap concerning BPA transformation via complexation. This research paves the way for further exploration into optimizing complexation sites and RM dosage, significantly enhancing the system's efficiency in water treatment applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106538PMC
http://dx.doi.org/10.1016/j.ese.2024.100421DOI Listing

Publication Analysis

Top Keywords

permanganate oxidation
8
bpa oxidation
8
radical cross-coupling
8
bpa
7
oxidation
5
overlooked interaction
4
interaction redox-mediator
4
redox-mediator bisphenol-a
4
bisphenol-a permanganate
4
oxidation efforts
4

Similar Publications

The formation of a stable alkyl At-C bond occurs during the shipment of At on a 3-octanone-impregnated column and the reactivity of At stripped from columns has been studied. The At could not be recovered from the 3-octanone organic phase using nitric acid or sodium hydroxide, even up to 10 and 15.7 M, respectively.

View Article and Find Full Text PDF

New insight into enhanced permanganate oxidation by lignocellulose-derived biochar: The overlooked role of persistent free radicals.

Water Res

December 2024

The Ministry of Education Key Laboratory of Northwest Water Resource, Environment and Ecology, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China. Electronic address:

Permanganate (Mn(VII)) is a traditional reagent used for water purification, but it is mild to deal with refractory organic contaminants of emerging concern. There is great interest in combination with effective and low-cost biochar to improve reaction kinetics of Mn(VII). Until recently, it still unclear how biomass composition and carbon structure of biochar influence the Mn(VII) oxidation performance.

View Article and Find Full Text PDF

Molecular Alterations of Algal Organic Matter in Oxidation Processes: Implications to the Formation of Disinfection Products.

ACS ES T Water

December 2024

Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina 29625, United States.

Article Synopsis
  • Seasonal algal blooms pose a risk to drinking water quality, and oxidative treatment can effectively remove algal cells but releases algal organic matter (AOM) that can complicate water treatment.
  • Different oxidants (like chlorine and ozone) impact the molecular characteristics of AOM, with ozone causing the most significant changes in its composition.
  • The study highlights that while oxidative treatment can reduce harmful reactions during water disinfection, it may also lead to the formation of new byproducts, including some that could be more concerning for water safety.
View Article and Find Full Text PDF

Preparation and Performance Analysis of Tung Cake Protein Adhesive.

Polymers (Basel)

December 2024

Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China.

Tung oil pressing generates a substantial amount of tung cake waste rich in protein, which can be used to develop a novel wood protein adhesive. This study determined the optimal alkali treatment parameters based on NaOH concentration, reaction temperature, and reaction time. Potassium permanganate (KMnO) and methyl trimethoxy silane (MTMS) were then sequentially added for cross-linking modification to achieve the optimal preparation process for the tung cake protein adhesive.

View Article and Find Full Text PDF

The occurrence of excessive levels of bivalent plumbum (Pb(II)) in wastewater poses a notable threat to both human health and ecological safety. In this study, orthogonal experiments were conducted to prepare coprecipitation-modified biochar (C-BC) and impregnation pyrolysis-modified biochar (I-BC) via potassium permanganate (KMnO) for removing Pb(II) from wastewater. Three types of modified biochars (BCs) (Mn-BCs) namely, C-BC, I-BC, and I-BC, were selected as high-efficiency adsorbents on the basis of their high removal rates (87.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!