Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chronic wasting disease (CWD) can spread among cervids by direct and indirect transmission, the former being more likely in emerging areas. Identifying subpopulations allows the delineation of focal areas to target for intervention. We aimed to assess the population structure of white-tailed deer () in the northeastern United States at a regional scale to inform managers regarding gene flow throughout the region. We genotyped 10 microsatellites in 5701 wild deer samples from Maryland, New York, Ohio, Pennsylvania, and Virginia. We evaluated the distribution of genetic variability through spatial principal component analysis and inferred genetic structure using non-spatial and spatial Bayesian clustering algorithms (BCAs). We simulated populations representing each inferred wild cluster, wild deer in each state and each physiographic province, total wild population, and a captive population. We conducted genetic assignment tests using these potential sources, calculating the probability of samples being correctly assigned to their origin. Non-spatial BCA identified two clusters across the region, while spatial BCA suggested a maximum of nine clusters. Assignment tests correctly placed deer into captive or wild origin in most cases (94%), as previously reported, but performance varied when assigning wild deer to more specific origins. Assignments to clusters inferred via non-spatial BCA performed well, but efficiency was greatly reduced when assigning samples to clusters inferred via spatial BCA. Differences between spatial BCA clusters are not strong enough to make assignment tests a reliable method for inferring the geographic origin of deer using 10 microsatellites. However, the genetic distinction between clusters may indicate natural and anthropogenic barriers of interest for management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106048 | PMC |
http://dx.doi.org/10.1002/ece3.11347 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!