In practical operating conditions, the lithium deposition behavior is often influenced by multiple coupled factors and there is also a lack of comprehensive and long-term validation for dendrite suppression strategies. Our group previously proposed an intermittent lithiophilic model for high-performance three-dimensional (3D) composite lithium metal anode (LMA), however, the electrodeposition behavior was not discussed. To verify this model, this paper presents a modified 3D carbon cloth (CC) backbone by incorporating NiFeO/FeO (NFFO) nanoparticles derived from bimetallic NiFe-MOFs. Enhanced Li adsorption capacity and lithiophilic modulation were achieved by bimetallic MOFs-derivatives which prompted faster and more homogeneous Li deposition. The intermittent model was further verified in conjunction with the density functional theory (DFT) calculations and electrodeposition behaviors. As a result, the obtained Li-CC@NFFO||Li-CC@NFFO symmetric batteries exhibit prolonged lifespan and low hysteresis voltage even under ultra-high current and capacity conditions (5 mA cm, 10 mAh cm), what's more, the full battery coupled with a high mass loading (9 mg cm) of LiFePO cathode can be cycled at a high rate of 5 C, the capacity retention is up to 95.2 % before 700 cycles. This work is of great significance to understand the evolution of lithium dendrites on the 3D intermittent lithiophilic frameworks.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202400569DOI Listing

Publication Analysis

Top Keywords

lithium metal
8
lithium deposition
8
intermittent lithiophilic
8
lithium
5
bimetallic mofs-derived
4
mofs-derived nifeo/feo
4
nifeo/feo enabled
4
enabled dendrite-free
4
dendrite-free lithium
4
metal anodes
4

Similar Publications

In overcoming the barrier of rapid Li transfer in lithium-ion batteries at extreme temperatures, the desolvation process and interfacial charge transport play critical roles. However, tuning the solvation structure and designing a kinetically stable electrode-electrolyte interface to achieve high-rate charging and discharging remain a challenge. Here, a lithium nonafluoro-1-butanesulfonate (NFSALi) additive is introduced to optimize stability and the robust solid electrolyte interface film (SEI), realizing a rapid Li transfer process and the structural integrity of electrode materials.

View Article and Find Full Text PDF

The redox aspects of lithium-ion batteries.

Energy Environ Sci

December 2024

Institute of Chemical Science and Engineering, Station 6, Ecole Polytechnique Federale de Lausanne CH-1015 Lausanne Switzerland

This article aims to present the redox aspects of lithium-ion batteries both from a thermodynamic and from a conductivity viewpoint. We first recall the basic definitions of the electrochemical potential of the electron, and of the Fermi level for a redox couple in solutions. The Fermi level of redox solids such as metal oxide particles is then discussed, and a Nernst equation is derived for two ideal systems, namely an ideally homogenous phase where the oxidised and reduced metal ions are homogeneously distributed and two segregated phases where the oxidised and the reduced metal ions are separated in two distinct phases such as observed, for example, in biphasic lithium iron phosphate.

View Article and Find Full Text PDF

High Entropy Fine-Tuning Achieves Fast Li Kinetics in High-Performance Co-Free High-Ni Layered Cathodes.

Adv Mater

January 2025

Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education and School of Energy Power and Mechanical Engineering, and Beijing Laboratory of New Energy Storage Technology, North China Electric Power University, Beijing, 102206, China.

Co-free high-Ni layered cathode materials LiNiMeO (Me = Mn, Mg, Al, etc.) are a key part of the next-generation high-energy lithium-ion batteries (LIBs) due to their high specific capacity and low cost. However, the hindered Li kinetics and the high reactivity of Ni result in poor rate performance and unsatisfied cycling stability.

View Article and Find Full Text PDF

LiF Artifacts in XPS Analysis of the SEI for Lithium Metal Batteries.

ACS Appl Mater Interfaces

January 2025

Department of Physics, Jinan University, Guangzhou, Guangdong 510632, P. R. China.

The solid electrolyte interphase (SEI) is considered to be the key to the performance of lithium metal batteries (LMBs). The analysis of the SEI and cathode electrolyte interphase (CEI) composition (especially F 1s spectra) by X-ray photoelectron spectroscopy (XPS) has become a consensus among researchers. However, the surface-sensitive XPS characterization is susceptible to LiF artifacts due to several factors, leading to the overexaggerated role of LiF in the analysis of the SEI and CEI.

View Article and Find Full Text PDF

In this study, magnesium-doped lithium manganese oxide nanoparticles were prepared through a solid-state reaction technique, and their surface was modified with mesoporous silica. The surface-modified material exhibited a significantly enhanced BET surface area from 5.791 to 66.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!