Bacterial sealing ability of calcium silicate-based sealer for endodontic surgery: an in-vitro study.

BMC Oral Health

Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, 21527, Egypt.

Published: May 2024

Background: Apical surgery with standard retrograde maneuvers may be challenging in certain cases. Simplifying apical surgery to reduce operating time and streamline retrograde manipulation is an emerging need in clinical endodontics.

Aim Of The Study: The aim of the study was to compare the bacterial sealing ability of a calcium silicate-based sealer with the single cone technique combined with root end resection only, and calcium silicate-based sealer as a retrograde filling versus MTA retrofilling, and to analyze bacterial viability using confocal laser scanning microscope (CLSM).

Materials And Methods: In this in vitro experimental study, 50 extracted human maxillary incisor teeth were instrumented and randomly divided into five groups: three experimental groups, a positive control group, and a negative control group (n = 10/group). In the experimental groups, the roots were obturated using the single cone technique (SCT) and a calcium silicate-based sealer. In group 1, the roots were resected 3 mm from the apex with no further retrograde preparation or filling. In groups 2 and 3, the roots were resected, retroprepared, and retrofilled with either a calcium silicate-based sealer or MTA, respectively. Group 4 (positive control) was filled with a single gutta-percha cone without any sealer. In group 5 (negative control), the canals were left empty, and the roots were sealed with wax and nail varnish. A bacterial leakage model using Enterococcus faecalis was employed to assess the sealing ability over a 30-day period, checking for turbidity and analyzing colony forming units (CFUs) per milliliter. Five specimens from each group were examined using CLSM for bacterial viability. Data for the bacterial sealing ability were statistically analyzed using chi-squared and Kruskal-Wallis tests.

Results: The three experimental groups did not show significant differences in terms of bacterial leakage, or bacterial counts (CFUs) (P > 0.05). However, significant differences were observed when comparing the experimental groups to the positive control group. Notably, the calcium silicate-based sealer, when used as a retrofilling, yielded the best sealing ability. CLSM imaging revealed viable bacterial penetration in all the positive control group specimens while for the experimental groups, dead bacteria was the prominent feature seen.

Conclusion: Within the limitations of this study, it could be concluded that the bacterial sealing ability of calcium silicate-based sealer with the single cone technique combined with root end resection only and calcium silicate-based sealer as a retrograde filling were comparable with MTA retrofilling during endodontic surgical procedures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11107006PMC
http://dx.doi.org/10.1186/s12903-024-04309-3DOI Listing

Publication Analysis

Top Keywords

calcium silicate-based
32
silicate-based sealer
32
sealing ability
24
experimental groups
20
bacterial sealing
16
positive control
16
control group
16
ability calcium
12
single cone
12
cone technique
12

Similar Publications

Root canal retreatment (Re-RCT) cases have shortcomings due to the ineffective removal of the root canal filling material, eventually leading to endodontic failure. This study aims to test the comparative efficacy of retreatment files in removing calcium silicate-based sealer and epoxy resin-based sealer. Thirty-two single-rooted teeth were decoronated at 15 mm and bio-mechanical preparation was performed.

View Article and Find Full Text PDF

Background: This study assessed stress distributions in simulated mandibular molars filled with various materials after the removal of fractured instruments from the apical thirds of the root canals.

Methods: Finite element models of the mesial and distal root canals were created, where fractured instruments were assumed to be removed using a staging platform established with a modified Gates-Glidden bur (Woodpecker, Guangxi, P.R.

View Article and Find Full Text PDF

Aim: Calcium silicate-based cements have been widely used in dentistry mainly due to their physicochemical and biological properties. Commercially available materials use radiopacifiers containing metals (bismuth, tantalum, tungsten and/or zirconium). To investigate volumetric changes, in vivo biocompatibility and systemic migration from eight commercially available materials, including powder/liquid and 'ready-to-use' presentations.

View Article and Find Full Text PDF

This study evaluated some physicochemical properties of an experimental tricalcium silicate-based cement (ETSC) indicated for use as pulp capping or endodontic repair material; Biodentine (BD) and White MTA-Angelus (MTA) cements served as comparators. Setting time, radiopacity, sorption, and solubility were determined according to ISO 6876/2012 and compressive strength according to ISO 9917-1/2019. pH and calcium ion release capacity were also assessed.

View Article and Find Full Text PDF

Effect of nanoparticulate CaCO on the biological properties of calcium silicate cement.

Sci Rep

January 2025

Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.

This study aimed to evaluate the effects of nanoparticulate CaCO (NPCC) on the biological properties of calcium silicate-based cements (CSCs), including their cytotoxicity, in vitro osteogenic activity, and interactions with rat femur tissue. The average size of NPCC was 90.3±26.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!