A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The effect of suboccipital muscle dysfunction on the biomechanics of the upper cervical spine: a study based on finite element analysis. | LitMetric

AI Article Synopsis

  • The study investigates how muscle dysfunction in the neck affects the biomechanical properties of the cervical spine, particularly relating to cervical spondylosis.
  • By using finite element models, the research simulates different conditions of muscle function, including normal, hypertonic (overactive), and imbalanced muscles.
  • Results indicate that muscle dysfunction impacts the stress experienced by the atlas and axis joints, with significant differences in stress levels during specific movements like flexion and extension, yet it does not lead to abnormal stress distribution in the atlanto-odontoid joint.

Article Abstract

Objective: Muscle dysfunction caused by repetitive work or strain in the neck region can interfere muscle responses. Muscle dysfunction can be an important factor in causing cervical spondylosis. However, there has been no research on how the biomechanical properties of the upper cervical spine change when the suboccipital muscle group experiences dysfunction. The objective of this study was to investigate the biomechanical evidence for cervical spondylosis by utilizing the finite element (FE) approach, thus and to provide guidance for clinicians performing acupoint therapy.

Methods: By varying the elastic modulus of the suboccipital muscle, the four FE models of C0-C3 motion segments were reconstructed under the conditions of normal muscle function and muscle dysfunction. For the two normal condition FE models, the elastic modulus for suboccipital muscles on both sides of the C0-C3 motion segments was equal and within the normal range In one muscle dysfunction FE model, the elastic modulus on both sides was equal and greater than 37 kPa, which represented muscle hypertonia; in the other, the elastic modulus of the left and right suboccipital muscles was different, indicating muscle imbalance. The biomechanical behavior of the lateral atlantoaxial joint (LAAJ), atlanto-odontoid joint (ADJ), and intervertebral disc (IVD) was analyzed by simulations, which were carried out under the six loadings of flexion, extension, left and right lateral bending, left and right axial rotation.

Results: Under flexion, the maximum stress in LAAJ with muscle imbalance was higher than that with normal muscle and hypertonia, while the maximum stress in IVD in the hypertonic model was higher than that in the normal and imbalance models. The maximum stress in ADJ was the largest under extension among all loadings for all models. Muscle imbalance and hypertonia did not cause overstress and stress distribution abnormalities in ADJ.

Conclusion: Muscle dysfunction increases the stress in LAAJ and in IVD, but it does not affect ADJ.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110322PMC
http://dx.doi.org/10.1186/s12891-024-07401-5DOI Listing

Publication Analysis

Top Keywords

muscle dysfunction
24
elastic modulus
16
muscle
14
suboccipital muscle
12
muscle imbalance
12
maximum stress
12
upper cervical
8
cervical spine
8
finite element
8
cervical spondylosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!