The spread of American Bullfrog has a significant impact on the surrounding ecosystem. It is important to study the mechanisms of their spreading so that proper mitigation can be applied when needed. This study analyzes data from national surveys on bullfrog distribution. We divided the data into 25 regional clusters. To assess the spread within each cluster, we constructed temporal sequences of spatial distribution using the agglomerative clustering method. We employed Elementary Cellular Automata (ECA) to identify rules governing the changes in spatial patterns. Each cell in the ECA grid represents either the presence or absence of bullfrogs based on observations. For each cluster, we counted the number of presence location in the sequence to quantify spreading intensity. We used a Convolutional Neural Network (CNN) to learn the ECA rules and predict future spreading intensity by estimating the expected number of presence locations over 400 simulated generations. We incorporated environmental factors by obtaining habitat suitability maps using Maxent. We multiplied spreading intensity by habitat suitability to create an overall assessment of bullfrog invasion risk. We estimated the relative spreading assessment and classified it into four categories: rapidly spreading, slowly spreading, stable populations, and declining populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109106PMC
http://dx.doi.org/10.1038/s41598-024-62139-3DOI Listing

Publication Analysis

Top Keywords

spreading intensity
12
american bullfrog
8
spreading
8
elementary cellular
8
cellular automata
8
number presence
8
habitat suitability
8
assessment american
4
bullfrog
4
bullfrog lithobates
4

Similar Publications

As conservation agricultural practices continue to spread, there is a need to understand how reduced tillage impacts soil microbes. Effects of no till (NT) and disk till (DT) relative to moldboard plow (MP) were investigated in a long-term experiment established on Chernozem. Results showed that conservation practices, especially NT, increased total, active and microbial biomass carbon.

View Article and Find Full Text PDF

Objective: The objective of this study was to discuss the characteristics of intracranial extension in patients with juvenile nasopharyngeal angiofibroma (JNA) and propose and an algorithm for its management.

Methods: A retrospective chart review of all patients with JNA who underwent operations between January 2013 and January 2023 was done, and those cases with intracranial extension categorized as stage IIIb, IVa, and IVb according to the Andrews modification of the Fisch staging classification were included in the study. Data were collected about age at presentation, symptoms, radiological findings, routes of intracranial extension, therapeutic management, and follow-up.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Aligarh Muslim University, Aligarh, UttarPradesh, India.

Background: Following the genome-wide association studies (GWAS) discovery of microglia-specific genes, particularly Trem-2, SHIP-1, and CD33, significantly associated with higher Alzheimer's disease (AD) risk, the microglia TREM2 pathway has become central for regulating amyloid load, tissue damage, and limiting its spread. These discoveries have opened up the exciting possibility of therapeutic microglia TREM2 manipulation in AD. To date, however, several elements of TREM2 signaling remain unknown, ranging from the temporal activation pattern and receptor-ligand binding to modulation of the brain microenvironment.

View Article and Find Full Text PDF

Pathogenic bacteria are the source of many serious health problems, such as foodborne diseases and hospital infections. Timely and accurate detection of these pathogens is of vital significance for disease prevention, control of epidemic spread, and protection of public health security. Rapid identification of pathogenic bacteria has become a research focus in recent years.

View Article and Find Full Text PDF

Tunable Bicontinuous Macroporous Cell Culture Scaffolds via Kinetically Controlled Phase Separation.

Adv Mater

January 2025

Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland.

Article Synopsis
  • 3D scaffolds provide a more natural environment for cell studies, but synthetic hydrogels often have limited pore sizes that restrict cell movement.
  • A new method using liquid-liquid phase separation creates macroporous hydrogels with adjustable pore sizes by controlling polymerization conditions like light intensity and hydrogel composition.
  • These macroporous gels, suitable for cell encapsulation, enhance cell spreading and migration, mimicking natural extracellular matrix (ECM) environments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!