Context: In the present work, the influence of aromatic ring substitution on a series of small-donor organic molecules (A, B, C, D, and E) with isoxazole cores was investigated for photovoltaic applications in organic solar cells. Frontier molecular orbital analysis, chemical reactivity descriptors, dipole moment, and population analysis showed that all the organic materials have intramolecular charge transfer abilities capable of donating electrons to the acceptor material (PCBM). The required photovoltaic parameters such as V, FF, J, LHE, and other associated optoelectronic parameters are reported. The results demonstrate that aromatic ring substitution influences charge transfer and power conversion efficiencies of solar cells. That is, an increase in the aromatic character of a material increases its charge transfer, and as a result, its photovoltaic properties are increased. Additionally, all the investigated derivatives are good charge transporters with suitable electron reorganization energies, which are beneficial for minimizing energy loss. Hence, these organic derivatives with isoxazole backbones are promising materials and may provide fresh insights into the design of new materials for organic solar cell applications.
Method: All calculations were performed using DFT and the ORCA 4.1.0 program package as the main tool for geometry optimization and frequency calculations. The Avogadro 1.2.1 visualization tool was used to prepare all input files executed by ORCA 4.1.0. The BP86, B3LYP, and wB97M series of functionals coupled with the def2/TZVP basis set were employed for geometry optimization. All energy-related calculations were carried out using the M06-2x functional. Multiwfn version 3.7 was used for aromaticity and population analysis. Excited state and UV-visible spectra were simulated using the TD-DFT method at the CAM-B3LYP-D3, wB97X-D3, and PBE0-D3 coupled with the ma-def2-TZVP basis set. Moreover, solvent effects were incorporated using the SMD scheme as incorporated in the ORCA software. Lastly, the RIJCOSX approximations were used to speed up calculations while maintaining accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-024-05978-1 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Nano Photocatalysis Lab., Department of Chemistry, College of Science, Shiraz University, Shiraz, 7194684795, I.R. of Iran.
Due to the industry's rapid growth, the presence of organic pollutants, especially antibiotics, in water and wastewater resources is the main concern for wildlife and human health. Therefore, these days, a significant challenge is developing an efficient, sustainable, and eco-friendly photocatalyst. Natural biological models have numerous advantages compared to artificial model materials.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
Two-dimensional (2D) Ruddlesden-Popper perovskites (RPPs) have garnered significant attention due to their enhanced stability compared with their three-dimensional counterparts. However, the power conversion efficiency (PCE) of 2D perovskite solar cells (2D-PSCs) remains lower than that of 3D-PSCs. Understanding the microstructural evolution of 2D perovskite films during fabrication is essential for improving their performance.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, PR China. Electronic address:
Oxidation systems are diverse and widely used for the degradation of organic pollutants in water. Identifying suitable oxidation systems for certain organic pollutants is a common challenge in practical engineering. Simultaneous consideration of the oxidation selectivity and economy of different oxidation systems for organic pollutants can improve the accuracy of the screening process.
View Article and Find Full Text PDFWater Res
December 2024
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China. Electronic address:
Since elevated amounts of chlorine disinfectant were discharged into surface water, more attention should be paid to the reactions between dissolved organic matter (DOM) and chlorine under sunlight. However, disinfection byproducts (DBPs) formed from DOM by solar photolysis of chlorine, and changes of cytotoxicity during this process remain unclear. In this study, it was found that solar photolysis of chlorine significantly promoted the formation of aliphatic chlorinated DBPs and aromatic chlorinated DBPs (including chlorobenzoquinone) by 44.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!