In response to the plastic waste crisis, teabag producers have substituted the petrochemical-plastic content of their products with bio-based, biodegradable polymers such as polylactic acid (PLA). Despite widespread use, the degradation rate of PLA/PLA-blended materials in natural soil and their effects on soil biota are poorly understood. This study examined the percentage mass deterioration of teabags with differing cellulose:PLA compositions following burial (-10 cm depth) in an arable field margin for 7-months, using a suite of analytical techniques, such as size exclusion chromatography, H nuclear magnetic resonance, dynamic scanning calorimetry, and scanning electron microscopy. The effect of 28-d exposure to teabag discs at environmentally relevant concentrations (0.02 %, 0.04 % and 0.07 % w/w) on the survival, growth and reproduction (OECD TG 222 protocol) of the key soil detritivore Eisenia fetida was assessed in laboratory trials. After 7-month burial, Tbag-A (2.4:1 blend) and Tbag-B (3.5:1 cellulose:PLA blend) lost 66 ± 5 % and 78 ± 4 % of their total mass, primarily attributed to degradation of cellulose as identified by FTIR spectroscopy and a reduction in the cellulose:PLA mass ratio, while Tbag-C (PLA) remained unchanged. There were clear treatment and dose-specific effects on the growth and reproductive output of E. fetida. At 0.07 % w/w of Tbag-A adult mortality marginally increased (15 %) and both the quantity of egg cocoons and the average mass of juveniles also increased, while at concentrations ≥0.04 % w/w of Tbag-C, the quantity of cocoons was suppressed. Adverse effects are comparable to those reported for non-biodegradable petrochemical-based plastic, demonstrating that bio-based PLA does not offer a more 'environmentally friendly' alternative. Our study emphasises the necessity to better understand the environmental fate and ecotoxicity of PLA/PLA-blends to ensure interventions developed through the UN Plastic Pollution Treaty to use alternatives and substitutes to conventional plastics do not result in unintended negative consequences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.172806 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
College of Hydrology and Water Resources, Hohai University, Nanjing 210000, China. Electronic address:
The presence of biodegradable microplastics (BMPs) alongside toxic metals in soil significantly threatens plant health. Current research mainly focuses on the effects of original BMPs. In contrast, the specific impacts of ultraviolet (UV)-aged BMPs and their interaction with Cadmium (Cd) on seed germination and growth are unclear.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, China.
A styrene-glycidylmethacrylate-1-allyl-3-vinylimidazole epoxy functionalized ionomer (EFI) was synthesized, and the EFI and carbon nanotubes (CNTs) were co-introduced into poly(lactide)/poly(butylene-adipate-co-terephtalate) (PLA/PBAT) blends to fabricate high performance composites with excellent mechanical properties, fatigue-resistance and dielectric properties. It is revealed that EFI can improve the interaction force between PLA and PBAT by inducing the interfacial crosslink reaction, thereby improving the melt strength of the samples. EFI can also refine the dispersion of CNT in the composites owing to the non-covalent force between EFI and CNT, promote the formation of filler network inside composites, which is demonstrated by DMA and rheological test results.
View Article and Find Full Text PDFBiomed Mater
January 2025
Department of Applied Mechanics, IIT Madras, Chennai-600036, Chennai, Tamil Nadu, 600036, INDIA.
Machine learning (ML) has emerged as a transformative tool in various industries, driving advancements in key tasks like classification, regression, and clustering. In the field of chemical engineering, particularly in the creation of biomedical devices, personalization is essential for ensuring successful patient recovery and rehabilitation. Polylactic acid (PLA) is a material with promising potential for applications like tissue engineering, orthopedic implants, drug delivery systems, and cardiovascular stents due to its biocompatibility and biodegradability.
View Article and Find Full Text PDFCutis
November 2024
Drs. Cortez, Hassun, Linhares, Pinheiro, Florenço, Michalany, Bagatin, and Nascimento are from the Federal University of São Paulo, Brazil. Drs. Cortez, Hassun, Linhares, Pinheiro, Florenço, Bagatin, and Nascimento are from the Department of Dermatology, and Dr. Michalany is from the Department of Dermatopathology. Drs. Cortez de Almeida and Melo are from Department of Dermatology, Rio de Janeiro State University, Brazil.
Cosmetic procedures carry inherent risks of adverse events. Though rarely reported, transient and permanent alopecia are potential complications of these procedures. We report the case of a 35-year-old woman who developed pain and patches of nonscarring alopecia with erythema and edema following aesthetic application of poly-L-lactic acid (PLLA) on the face and along the frontal hairline.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Cellular and Molecular Biology, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
Background/aims: Gastric cancer (GC) is a significant global health issue with high incidence rates and poor prognoses, ranking among the top prevalent cancers worldwide. Due to undesirable side effects and drug resistance, there is a pressing need for the development of novel therapeutic strategies. Understanding the interconnectedness of the JAK2/STAT3/mTOR/PI3K pathway in tumorigenesis and the role of Astaxanthin (ASX), a red ketocarotenoid member of xanthophylls and potent antioxidant and anti-tumor activity, can be effective for cancer treatments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!