In-situ and label-free measurement of cytochrome C concentration with a TiC-MXene sensitized fiber-optic MZI sensor.

Anal Chim Acta

College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China; State Key Laboratory of Synthetical Automation for Process Industries, Shenyang, 110819, China; Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, China.

Published: June 2024

Background: The concentration of cytochrome C is demonstrated to be an effective indicator of the microbial corrosion strength of metals. Traditional cytochrome C sensor can detect cytochrome C with a low detection limit, but their use is limited by their high cost, cumbersome operation, and susceptibility to malignant environments. In addition, studies on the monitoring of cytochrome C in the field of microbial corrosion has still not been carried out. Therefore, there is a need for a highly sensitive, selective, low-cost, anti-interference, and stable cytochrome C sensor with online monitoring and remote sensing capabilities for in-situ measurement of microbial corrosion strength.

Results: This paper proposed a highly sensitive label-free fiber-optic sensor based on Mach-Zehnder interferometer (MZI) for in-situ measurement of the microbial corrosion marker cytochrome C. Two-dimensional TiC-MXene material is uniformly immobilized onto the surface of the sensing area to improve the sensitivity, hydrophilicity, and specific surface area of the sensing area, as well as to facilitate the immobilization of specific sensitive materials. The cytochrome C antibody is modified on the surface of TiC-MXene to specifically recognize cytochrome C, whose concentration variation can be measured by monitoring the spectral shift of MZI sensor. Results demonstrate a measurement sensitivity of 1.428 nm/μM for cytochrome C concentrations ranging from 0 to 7.04 μM. The detection limit of the sensor is calculated to be 0.392 μM with remarkable performance, including selectivity, stability, and reliability. Besides, the measurement result of the proposed sensor in real microbial corrosive environment is consistent with that of the ideal environment.

Significance And Novelty: This is the first instance of achieving in-situ and label-free measurement of cytochrome C by using a fiber-optic MZI sensor, which undoubtedly provides a feasible solution for the effective monitoring of microbial metal corrosion in the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2024.342665DOI Listing

Publication Analysis

Top Keywords

microbial corrosion
16
mzi sensor
12
cytochrome
11
in-situ label-free
8
label-free measurement
8
measurement cytochrome
8
cytochrome concentration
8
fiber-optic mzi
8
sensor
8
cytochrome sensor
8

Similar Publications

Optimal submicron roughness for balancing degradation behavior, immune modulation, and microbial adhesion on zinc-based barrier membranes.

Biomater Adv

December 2024

Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou 510180, China; Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510180, China. Electronic address:

Metallic zinc (Zn) has been demonstrated to be a promising alternative to barrier membrane materials for guided bone regeneration. Surface roughness significantly affects the properties of degradable Zn-based metals, especially within the Janus micro-environments of tissue regeneration. However, the effects of optimal surface roughness on Zn remain unknown.

View Article and Find Full Text PDF

Titanium potassium oxalate had been mixed into the electrolyte to improve the anti-corrosion property of the micro arc oxidation coating on the surface of the aluminium alloy. The surface and cross-section of the coating at different titanium potassium oxalate concentrations had been observed by scanning electron microscopy, showing that when the titanium potassium oxalate concentration was 10 g/L, the coating compactness was better. Additionally, the element content of the coating had been studied by the energy dispersive spectrometer, and results proved that the coating consisted of Al, O, Ti, Si, and P.

View Article and Find Full Text PDF

New Strategy for Microbial Corrosion Protection: Photocatalytic Antimicrobial Quantum Dots.

Nanomaterials (Basel)

December 2024

Hebei Short Process Steelmaking Technology Innovation Center, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.

Microbial corrosion has significant implications for the economy, environment, and human safety worldwide. Photocatalytic antibacterial technology, owing to its advantages in environmental protection, broad-spectrum, and efficient sterilization, presents a compelling alternative to traditional antibacterial strategies for microbial corrosion protection. In recent years, photocatalytic quantum dot materials have garnered considerable attention in this field due to their unique quantum effects.

View Article and Find Full Text PDF

Concrete, as the most widely used construction material globally, is prone to cracking under the influence of external factors such as mechanical loads, temperature fluctuations, chemical corrosion, and freeze-thaw cycles. Traditional concrete crack repair methods, such as epoxy resins and polymer mortars, often suffer from a limited permeability, poor compatibility with substrates, and insufficient long-term durability. Microbial biogrouting technology, leveraging microbial-induced calcium carbonate precipitation (MICP), has emerged as a promising alternative for crack sealing.

View Article and Find Full Text PDF

This paper presents the results of microbial corrosion tests on M0-grade copper under conditions simulating a geological repository for radioactive waste at the Yeniseisky site (Krasnoyarsk Krai, Russia). The work used a microbial community sampled from a depth of 450 m and stimulated with glucose, hydrogen and sulfate under anaerobic conditions. It was shown that the maximum corrosion rate, reaching 9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!