Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Double emulsions (DEs) have attracted researchers' attention to be utilized as a promising platform in biomedical and chemical applications. Several actuation mechanisms have been proposed for the generation of DEs. The conventional DE formation approaches (e.g. two-stage emulsification) suffer from low monodispersity. The electric actuation (i.e. coaxial electrospray technology) has been demonstrated as a controllable method for the DE formation, while the capability of magnetic actuation has not been studied yet.
Result: In the present study, the generation of ferrofluid double emulsions (FDEs), made from water-based ferrofluid as a core and oil as a shell, under the magnetic actuation of a permanent magnet with a steady magnetic field and an electromagnet with DC and pulse width modulation (PWM) magnetic fields was investigated with a simple controllable setup fabricated using 3D printing. The effect of various parameters affecting the FDE formation, such as the fluid flow rates, the magnetic field type, the magnetic flux density, and the PWM frequency and duty cycle, on the FDE formation characteristics, including the inner and outer equivalent diameters, and the formation frequency was studied. Under the steady magnetic field, two regimes of the FDE formation were identified: inertia-dominated and magnet-dominated.
Significance: Wireless power-free magnetic actuation provides better control over the FDE formation, enhancing this process by increasing the FDE formation frequency with high monodispersity. The PWM magnetic field offers excellent controllability over the FDE formation with low-volume or no, in some cases, satellite droplets by tuning the PWM frequency and the duty cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2024.342573 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!