Introduction: Weill-Marchesani syndrome (WMS) is a hereditary connective tissue disorder with substantial heterogeneity in clinical features and genetic etiology, so it is essential to define the full mutation spectrum for earlier diagnosis. In this study, we report Weill-Marchesani-like syndrome (WMS-like) change to autosomal dominance inheritance caused by novel haplotypic mutations in latent transforming growth factor beta-binding protein 2 (LTBP2).
Methods: Twenty-five members from a 4-generation Chinese family were recruited from Guangzhou, of whom nine were diagnosed with WMS-like disease, nine were healthy, and seven were of "uncertain" clinical status because of their young age. All members received detailed physical and ocular examinations. Whole-exome sequencing, Sanger sequencing, and real-time PCR were used to identify and verify the causative mutations in family members.
Results: Genetic sequencing revealed novel haplotypic mutations on the same LTBP2 chromosome associated with WMS-like, c. 2657C>A/p.T886K in exon 16 and deletion of exons 25-36. Real-time PCR and Sanger sequencing verified both mutations in patients with clinically diagnosed WMS-like, and in one "uncertain" child. In these patients, the haplotypic mutations led to ectopia lentis, short stature, and obesity.
Conclusion: Our study revealed that WMS-like may be associated with haplotypic LTBP2 mutations with autosomal dominant inheritance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000538844 | DOI Listing |
Orphanet J Rare Dis
January 2025
Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
Background: Sarcoglycanopathies (SGPs) are limb-girdle muscular dystrophies (LGMDs) that can be classified into four types, LGMDR3, LGMDR4, LGMDR5, and LGMDR6, caused by mutations in the genes, SGCA, SGCB, SGCG, and SGCD, respectively. SGPs are relatively rare in Japan. This study aims to profile the genetic variants that cause SGPs in Japanese patients.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
Background: The common APOE2/E3/E4 polymorphism, the strongest risk factor for Alzheimer's disease (AD), is determined by two-site haplotypes at codons 112 (Cys>Arg) and 158 (Arg>Cys), resulting into six genotypes. Due to strong linkage disequilibrium between the two sites, 3 of the 4 expected haplotypes (E2, E3, E4) have been observed and extensively studied in relation to AD risk. Compared to the most common haplotype of E3 (Cys112 - Arg158), E4 (Arg112 - Arg 158) and E2 (Cys112 - Cys158) haplotypes are determined by a single-point mutation at codons 112 and 158, respectively.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Missouri - St. Louis, Saint Louis, MO, USA.
Background: Haplotypes are patterns of nucleotides in close proximity along a chromosome that are passed together across time and space. These patterns dictate the specific properties of proteins produced and the regulation of this production. General haplotype inference methods phase all provided genotypes within the region of interest into two haplotypes without regard for the ages or evolutionary impact of each mutation, thus force the inclusion of more recent and/or neutral mutations.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Animal Sciences, Central University of Himachal Pradesh, 176206, Dharamsala, India.
Tor putitora is an endangered cyprinid fish constrained to cold water and is also considered an indicator of a healthy aquatic ecosystem. The present study aimed to examine the haplotypic diversity, genetic variation and population structure of T. putitora isolates using COI and Cyt b gene sequences submitted in GenBank.
View Article and Find Full Text PDFBMC Genomics
December 2024
Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
Background: Rice, as one of the most important staple crops, its genetic improvement plays a crucial role in agricultural production and food security. Although extensive research has utilized single nucleotide polymorphisms (SNPs) data to explore the genetic basis of important agronomic traits in rice improvement, reports on the role of other types of variations, such as insertions and deletions (INDELs), are still limited.
Results: In this study, we extracted INDELs from resequencing data of 148 rice improved varieties.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!