A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multimodality quantitative ultrasound envelope statistics imaging based support vector machines for characterizing tissue scatterer distribution patterns: Methods and application in detecting microwave-induced thermal lesions. | LitMetric

Ultrasound envelope statistics imaging, including ultrasound Nakagami imaging, homodyned-K imaging, and information entropy imaging, is an important group of quantitative ultrasound techniques for characterizing tissue scatterer distribution patterns, such as scatterer concentrations and arrangements. In this study, we proposed a machine learning approach to integrate the strength of multimodality quantitative ultrasound envelope statistics imaging techniques and applied it to detecting microwave ablation induced thermal lesions in porcine liver ex vivo. The quantitative ultrasound parameters included were homodyned-K α which is a scatterer clustering parameter related to the effective scatterer number per resolution cell, Nakagami m which is a shape parameter of the envelope probability density function, and Shannon entropy which is a measure of signal uncertainty or complexity. Specifically, the homodyned-K log(α), Nakagami-m, and horizontally normalized Shannon entropy parameters were combined as input features to train a support vector machine (SVM) model to classify thermal lesions with higher scatterer concentrations from normal tissues with lower scatterer concentrations. Through heterogeneous phantom simulations based on Field II, the proposed SVM model showed a classification accuracy above 0.90; the area accuracy and Dice score of higher-scatterer-concentration zone identification exceeded 83% and 0.86, respectively, with the Hausdorff distance <26. Microwave ablation experiments of porcine liver ex vivo at 60-80 W, 1-3 min showed that the SVM model achieved a classification accuracy of 0.85; compared with single log(α),m, or hNSE parametric imaging, the SVM model achieved the highest area accuracy (89.1%) and Dice score (0.77) as well as the smallest Hausdorff distance (46.38) of coagulation zone identification. We concluded that the proposed multimodality quantitative ultrasound envelope statistics imaging based SVM approach can enhance the capability to characterize tissue scatterer distribution patterns and has the potential to detect the thermal lesions induced by microwave ablation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11128516PMC
http://dx.doi.org/10.1016/j.ultsonch.2024.106910DOI Listing

Publication Analysis

Top Keywords

quantitative ultrasound
16
ultrasound envelope
12
envelope statistics
12
statistics imaging
12
thermal lesions
12
scatterer concentrations
12
multimodality quantitative
8
support vector
8
characterizing tissue
8
tissue scatterer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!