The fusion point of temporal binding: Promises and perils of multisensory accounts.

Cogn Psychol

Trier University, Germany; Institute for Cognitive and Affective Neuroscience (ICAN), University of Trier, Germany.

Published: June 2024

AI Article Synopsis

Article Abstract

Performing an action to initiate a consequence in the environment triggers the perceptual illusion of temporal binding. This phenomenon entails that actions and following effects are perceived to occur closer in time than they do outside the action-effect relationship. Here we ask whether temporal binding can be explained in terms of multisensory integration, by assuming either multisensory fusion or partial integration of the two events. We gathered two datasets featuring a wide range of action-effect delays as a key factor influencing integration. We then tested the fit of a computational model for multisensory integration, the statistically optimal cue integration (SOCI) model. Indeed, qualitative aspects of the data on a group-level followed the principles of a multisensory account. By contrast, quantitative evidence from a comprehensive model evaluation indicated that temporal binding cannot be reduced to multisensory integration. Rather, multisensory integration should be seen as one of several component processes underlying temporal binding on an individual level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cogpsych.2024.101662DOI Listing

Publication Analysis

Top Keywords

temporal binding
20
multisensory integration
16
multisensory
7
integration
7
temporal
5
binding
5
fusion point
4
point temporal
4
binding promises
4
promises perils
4

Similar Publications

Aging-dependent temporal regulation of MIR156 epigenetic silencing by CiLDL1 and CiNF-YB8 in chrysanthemum.

New Phytol

January 2025

Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.

Temporal decline in microRNA miR156 expression is crucial for the transition to, and maintenance of, the adult phase and flowering competence in flowering plants. However, the molecular mechanisms underlying the temporal regulation of miR156 reduction remain largely unknown. Here, we investigated the epigenetic mechanism regulating the temporal silencing of cin-MIR156 in wild chrysanthemum (Chrysanthemum indicum), focusing on the role of the lysine-specific demethylase CiLDL1 and the nuclear factor Y complex.

View Article and Find Full Text PDF

Previous research suggests mitochondrial apoptosis alleviates rheumatoid arthritis (RA), but the role of mitochondrial apoptosis-related genes (MARGs) is unclear. Urgent exploration of RA-related mitochondrial apoptosis biomarkers is needed. Gene Expression Ontology (GEO)-derived RA datasets were used to identify differentially expressed genes (DEGs) compared to normal controls, intersected with MARGs to obtain differentially expressed mitochondrial apoptosis-related genes (DE-MARGs).

View Article and Find Full Text PDF

Spinal cord injuries (SCIs) often lead to lifelong disability. Among the various types of injuries, incomplete and discomplete injuries, where some axons remain intact, offer potential for recovery. However, demyelination of these spared axons can worsen disability.

View Article and Find Full Text PDF

Approximately 40% of individuals undergoing anterior temporal lobe resection for temporal lobe epilepsy experience episodic memory decline. There has been a focus on early memory network changes; longer-term plasticity and its impact on memory function are unclear. Our study investigates neural mechanisms of memory recovery and network plasticity over nearly a decade post-surgery.

View Article and Find Full Text PDF

Background: Postprandial hyperglycemia induces expression of inflammatory cytokines including tumor necrosis factor (TNF), which promotes the onset of type 2 diabetes and cardiovascular diseases. In this study, we investigated whether a transient high-glucose culture enhanced sustained expression of TNF, or whether the induction is associated with histone acetylation, and bromodomain protein containing protein 4 (BRD4), which binds acetylated histone, in human juvenile macrophage-like THP-1 cells.

Methods: THP-1 cells were cultured in medium with high-glucose in the presence or absence of (+)-JQ1, an inhibitor of bromodomain and extra-terminal domain family, for 24 h (day 0).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!