A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A multiomics approach reveals evidence for phenylbutyrate as a potential treatment for combined D,L-2- hydroxyglutaric aciduria. | LitMetric

A multiomics approach reveals evidence for phenylbutyrate as a potential treatment for combined D,L-2- hydroxyglutaric aciduria.

Mol Genet Metab

Department of Pediatrics, Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA. Electronic address:

Published: July 2024

Purpose: To identify therapies for combined D, L-2-hydroxyglutaric aciduria (C-2HGA), a rare genetic disorder caused by recessive variants in the SLC25A1 gene.

Methods: Patients C-2HGA were identified and diagnosed by whole exome sequencing and biochemical genetic testing. Patient derived fibroblasts were then treated with phenylbutyrate and the functional effects assessed by metabolomics and RNA-sequencing.

Results: In this study, we demonstrated that C-2HGA patient derived fibroblasts exhibited impaired cellular bioenergetics. Moreover, Fibroblasts form one patient exhibited worsened cellular bioenergetics when supplemented with citrate. We hypothesized that treating patient cells with phenylbutyrate (PB), an FDA approved pharmaceutical drug that conjugates glutamine for renal excretion, would reduce mitochondrial 2-ketoglutarate, thereby leading to improved cellular bioenergetics. Metabolomic and RNA-seq analyses of PB-treated fibroblasts demonstrated a significant decrease in intracellular 2-ketoglutarate, 2-hydroxyglutarate, and in levels of mRNA coding for citrate synthase and isocitrate dehydrogenase. Consistent with the known action of PB, an increased level of phenylacetylglutamine in patient cells was consistent with the drug acting as 2-ketoglutarate sink.

Conclusion: Our pre-clinical studies suggest that citrate supplementation has the possibility exacerbating energy metabolism in this condition. However, improvement in cellular bioenergetics suggests phenylbutyrate might have interventional utility for this rare disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymgme.2024.108495DOI Listing

Publication Analysis

Top Keywords

cellular bioenergetics
16
patient derived
8
derived fibroblasts
8
patient cells
8
patient
5
multiomics approach
4
approach reveals
4
reveals evidence
4
phenylbutyrate
4
evidence phenylbutyrate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!