Functional characterization of geranyl/farnesyl diphosphate synthase in Wurfbainia villosa and Wurfbainia longiligularis.

Plant Physiol Biochem

Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China. Electronic address:

Published: July 2024

Wurfbainia villosa and Wurfbainia longiligularis are the two primary plant sources of Fructus Amomi, a traditional Chinese medicine. Both plants are rich in volatile terpenoids, including monoterpenes and sesquiterpenes, which are the primary medicinal components of Fructus Amomi. The trans-isopentenyl diphosphate synthase (TIDS) gene family plays a key part in determining terpenoid diversity and accumulation. However, the TIDS gene family have not been identified in W. villosa and W. longiligularis. This study identified thirteen TIDS genes in W. villosa and eleven TIDS genes in W. longiligularis, which may have expanded through segmental replication events. Based on phylogenetic analysis and expression levels, eight candidate WvTIDSs and five WlTIDSs were selected for cloning. Functional characterization in vitro demonstrated that four homologous geranyl diphosphate synthases (GPPSs) (WvGPPS1, WvGPPS2, WlGPPS1, WlGPPS2) and two geranylgeranyl diphosphate synthases (GGPPSs) (WvGGPPS and WlGGPPS) were responsible for catalyzing the biosynthesis of geranyl diphosphate (GPP), whereas two farnesyl diphosphate synthases (FPPSs) (WvFPPS and WlFPPS) catalysed the biosynthesis of the farnesyl diphosphate (FPP). A comparison of six proteins with identified GPPS functions showed that WvGGPPS and WlGGPPS exhibited the highest activity levels. These findings indicate that homologous GPPS and GGPPS together promote the biosynthesis of GPP in W. villosa and W. longiligularis, thus providing sufficient precursors for the synthesis of monoterpenes and providing key genetic elements for Fructus Amomi variety improvement and molecular breeding.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2024.108741DOI Listing

Publication Analysis

Top Keywords

fructus amomi
12
diphosphate synthases
12
functional characterization
8
diphosphate synthase
8
wurfbainia villosa
8
villosa wurfbainia
8
wurfbainia longiligularis
8
tids gene
8
gene family
8
villosa longiligularis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!